Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 7;68(Pt 8):o2362. doi: 10.1107/S1600536812029844

2-(2-Nitro­phen­yl)-1,3-benzothia­zole

S Vijayakumar a, S Murugavel b,*, R Selvakumar c, M Bakthadoss c,
PMCID: PMC3414295  PMID: 22904828

Abstract

In the title compound, C13H8N2O2S, the essentially planar benzothia­zole system [maximum deviation = −0.012 (1) Å for the S atom] is oriented at a dihedral angle of 48.3 (1)° with respect to the benzene ring. The nitro group is substanti­ally twisted from the plane of its attached benzene ring [dihedral angle = 52.0 (1)°]. The crystal packing features C—H⋯O hydrogen bonds, which generate C(6) helical chains propagating along [010]. Weak C—H⋯π inter­actions also occur in the crystal.

Related literature  

For the pharmacological activity of benzothia­zole derivatives, see: Repiĉ et al. (2001); Schwartz et al. (1992). For related structures, see: Lakshmanan et al. (2011); Zhang et al. (2008).graphic file with name e-68-o2362-scheme1.jpg

Experimental  

Crystal data  

  • C13H8N2O2S

  • M r = 256.27

  • Monoclinic, Inline graphic

  • a = 7.6092 (2) Å

  • b = 12.7854 (3) Å

  • c = 11.9938 (3) Å

  • β = 90.556 (2)°

  • V = 1166.78 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.937, T max = 0.958

  • 14037 measured reflections

  • 3258 independent reflections

  • 2559 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.113

  • S = 1.05

  • 3258 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029844/hb6879sup1.cif

e-68-o2362-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029844/hb6879Isup2.hkl

e-68-o2362-Isup2.hkl (156.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029844/hb6879Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the S1/N1/C1/C2/C7 thiazole ring, the C2–C7 benzene ring and the C8–C13 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.51 3.236 (2) 135
C9—H9⋯Cg1ii 0.93 2.92 3.468 (2) 119
C10—H10⋯Cg2ii 0.93 2.90 3.536 (2) 127
C3—H3⋯Cg3iii 0.93 2.99 3.673 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SM thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

The benzothiazole nucleus is associated with several pharmacological activities such as anti-tumor (Repiĉ et al., 2001) and antimicrobial (Schwartz et al., 1992). As part of our studies in this area, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The benzothiazole moiety (S1/N1/C1—C7) is essentially planar [maximum deviation = -0.012 (1) Å for the S atom] and lies at an angle 48.3 (1)° with respect to the benzene ring. The nitro group (N2/O1/O2) is twisted from the attached benzene ring, forming a dihedral angle of 52.0 (1)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Lakshmanan et al., 2011, Zhang et al., 2008).

The crystal packing features C—H···O hydrogen bonds. Atom C11 at x, y, z donates one proton to atom O1 at 1 - x, -1/2 + y, 3/2 - z, forming C(6) zigzag chains along the b axis (Fig. 2). The crystal packing also features three weak C—H···π interactions, the first one between a benzene H9 atom and the thiazole ring (S1/N1/C1/C2/C7) of an adjacent molecule, with a C9—H9···Cg1ii seperation of 2.92 Å, the second one between a benzene H10 atom and the benzene ring (C2–C7) of a neighbouring molecule, with a C10—H10···Cg2ii seperation of 2.90 Å and the third one between a benzene H3 atom and the benzene ring (C8–C13) of a neighbouring molecule, with a C3—H3···Cg3iii seperation of 2.99 Å (Table 1 and Fig. 3; Cg1, Cg2 and Cg3 are the centroids of the (S1/N1/C1/C2/C7) thiazole ring, (C2–C7) benzene ring and (C8–C13) benzene ring, respectively. symmetry code as in Fig. 3).

Experimental

A mixture of 2-nitrobenzaldehyde (1 g, 6.6 mmol), 2-aminobenzenethiol (0.827 g, 6.6 mmol) and bakers' yeast (2.05 g) were stirred at room temperature for 24 h in dichloro methane(DCM). After completion of the reaction, the bakers' yeast was filtered through a bed of Celite, and the filtrate was concentrated under reduced pressure. On cooling, the solid product (1.60 g, 94%) obtained was separated and crystallized from ethylacetate to afford the title compound as yellow blocks.

Refinement

All the H atoms were positioned geometrically, with C–H = 0.93–0.96 Å and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing intermolecular C—H···O hydrogen bonds (dotted lines), forming C(6) zigzag chains along the b axis. For clarity H atoms involved in the hydrogen bonds are shown. [Symmetry codes:(iv)1 - x, -1/2 + y, 3/2 - z; (v)x, -1 + y, z; (vi)1 - x, -3/2 + y, 3/2 - z; (vii)x, -2 + y, z].

Fig. 3.

Fig. 3.

A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg1, Cg2 and Cg3 denotes centroid of the S1/N1/C1/C2/C7 thiazole ring, C2–C7 benzene ring and C8–C13 benzene ring, respectively. [Symmetry codes: (ii)-x, -y, 1 - z; (iii)-x, 1/2 + y, 3/2 - z].

Crystal data

C13H8N2O2S F(000) = 528
Mr = 256.27 Dx = 1.459 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3261 reflections
a = 7.6092 (2) Å θ = 2.3–29.5°
b = 12.7854 (3) Å µ = 0.27 mm1
c = 11.9938 (3) Å T = 293 K
β = 90.556 (2)° Block, yellow
V = 1166.78 (5) Å3 0.24 × 0.22 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3258 independent reflections
Radiation source: fine-focus sealed tube 2559 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 10.0 pixels mm-1 θmax = 29.5°, θmin = 2.3°
ω scans h = −6→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −17→17
Tmin = 0.937, Tmax = 0.958 l = −16→16
14037 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2357P] where P = (Fo2 + 2Fc2)/3
3258 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.23422 (17) 0.05259 (10) 0.59828 (11) 0.0353 (3)
C2 0.16130 (18) 0.21138 (10) 0.64971 (11) 0.0363 (3)
C3 0.0966 (2) 0.29175 (12) 0.71628 (13) 0.0480 (3)
H3 0.0530 0.2776 0.7869 0.058*
C4 0.0984 (2) 0.39208 (12) 0.67587 (16) 0.0548 (4)
H4 0.0561 0.4462 0.7199 0.066*
C5 0.1620 (2) 0.41411 (12) 0.57096 (16) 0.0560 (4)
H5 0.1621 0.4830 0.5460 0.067*
C6 0.2249 (2) 0.33699 (12) 0.50273 (15) 0.0531 (4)
H6 0.2667 0.3523 0.4320 0.064*
C7 0.22399 (19) 0.23476 (11) 0.54327 (12) 0.0404 (3)
C8 0.26409 (17) −0.06135 (10) 0.60273 (11) 0.0362 (3)
C9 0.2087 (2) −0.12556 (11) 0.51565 (13) 0.0465 (3)
H9 0.1533 −0.0963 0.4536 0.056*
C10 0.2349 (2) −0.23238 (12) 0.52027 (15) 0.0542 (4)
H10 0.1979 −0.2743 0.4612 0.065*
C11 0.3152 (2) −0.27701 (11) 0.61136 (16) 0.0546 (4)
H11 0.3325 −0.3490 0.6137 0.065*
C12 0.3705 (2) −0.21558 (11) 0.69957 (14) 0.0470 (3)
H12 0.4235 −0.2455 0.7621 0.056*
C13 0.34560 (18) −0.10908 (10) 0.69301 (11) 0.0376 (3)
N1 0.16909 (16) 0.10658 (8) 0.67886 (9) 0.0385 (3)
N2 0.42054 (19) −0.04475 (10) 0.78230 (11) 0.0482 (3)
O1 0.51720 (18) 0.02623 (10) 0.75526 (12) 0.0675 (4)
O2 0.3857 (2) −0.06687 (13) 0.87769 (10) 0.0812 (4)
S1 0.29145 (6) 0.12103 (3) 0.47927 (3) 0.04852 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0351 (6) 0.0335 (6) 0.0372 (6) 0.0036 (5) −0.0008 (5) 0.0019 (5)
C2 0.0360 (7) 0.0340 (6) 0.0389 (6) 0.0019 (5) −0.0033 (5) −0.0014 (5)
C3 0.0543 (9) 0.0430 (7) 0.0469 (8) 0.0053 (6) 0.0005 (7) −0.0092 (6)
C4 0.0577 (10) 0.0379 (7) 0.0687 (10) 0.0062 (7) −0.0064 (8) −0.0153 (7)
C5 0.0586 (10) 0.0316 (7) 0.0776 (11) −0.0010 (7) −0.0063 (8) 0.0036 (7)
C6 0.0607 (10) 0.0383 (8) 0.0605 (9) −0.0017 (7) 0.0062 (8) 0.0109 (7)
C7 0.0416 (7) 0.0338 (6) 0.0459 (7) 0.0012 (5) 0.0020 (6) 0.0019 (5)
C8 0.0339 (6) 0.0326 (6) 0.0422 (7) 0.0034 (5) −0.0006 (5) −0.0012 (5)
C9 0.0464 (8) 0.0423 (7) 0.0506 (8) 0.0074 (6) −0.0117 (7) −0.0064 (6)
C10 0.0537 (9) 0.0404 (8) 0.0681 (11) 0.0038 (7) −0.0123 (8) −0.0167 (7)
C11 0.0561 (9) 0.0309 (7) 0.0766 (11) 0.0033 (6) −0.0052 (8) −0.0038 (7)
C12 0.0489 (8) 0.0362 (7) 0.0559 (8) 0.0048 (6) −0.0032 (7) 0.0064 (6)
C13 0.0373 (7) 0.0336 (6) 0.0417 (7) 0.0013 (5) −0.0006 (5) −0.0005 (5)
N1 0.0442 (6) 0.0345 (5) 0.0368 (5) 0.0048 (4) 0.0009 (5) 0.0007 (4)
N2 0.0552 (8) 0.0416 (6) 0.0476 (7) 0.0074 (6) −0.0130 (6) −0.0025 (5)
O1 0.0702 (8) 0.0496 (7) 0.0822 (9) −0.0119 (6) −0.0263 (7) −0.0049 (6)
O2 0.1183 (13) 0.0836 (10) 0.0414 (6) 0.0026 (9) −0.0075 (7) −0.0013 (6)
S1 0.0620 (3) 0.0411 (2) 0.0428 (2) 0.00900 (16) 0.01624 (17) 0.00421 (14)

Geometric parameters (Å, º)

C1—N1 1.2906 (17) C7—S1 1.7247 (14)
C1—C8 1.4752 (18) C8—C13 1.3844 (19)
C1—S1 1.7335 (13) C8—C9 1.391 (2)
C2—N1 1.3858 (17) C9—C10 1.381 (2)
C2—C3 1.3940 (19) C9—H9 0.9300
C2—C7 1.400 (2) C10—C11 1.371 (2)
C3—C4 1.371 (2) C10—H10 0.9300
C3—H3 0.9300 C11—C12 1.380 (2)
C4—C5 1.381 (3) C11—H11 0.9300
C4—H4 0.9300 C12—C13 1.3770 (18)
C5—C6 1.371 (3) C12—H12 0.9300
C5—H5 0.9300 C13—N2 1.4617 (18)
C6—C7 1.395 (2) N2—O2 1.2103 (18)
C6—H6 0.9300 N2—O1 1.2142 (19)
N1—C1—C8 124.15 (12) C13—C8—C1 122.09 (12)
N1—C1—S1 116.61 (10) C9—C8—C1 120.68 (12)
C8—C1—S1 119.24 (10) C10—C9—C8 120.72 (14)
N1—C2—C3 125.64 (13) C10—C9—H9 119.6
N1—C2—C7 115.00 (11) C8—C9—H9 119.6
C3—C2—C7 119.36 (13) C11—C10—C9 120.44 (15)
C4—C3—C2 118.84 (15) C11—C10—H10 119.8
C4—C3—H3 120.6 C9—C10—H10 119.8
C2—C3—H3 120.6 C10—C11—C12 120.29 (14)
C3—C4—C5 121.16 (15) C10—C11—H11 119.9
C3—C4—H4 119.4 C12—C11—H11 119.9
C5—C4—H4 119.4 C13—C12—C11 118.56 (14)
C6—C5—C4 121.63 (15) C13—C12—H12 120.7
C6—C5—H5 119.2 C11—C12—H12 120.7
C4—C5—H5 119.2 C12—C13—C8 122.75 (13)
C5—C6—C7 117.59 (16) C12—C13—N2 117.52 (13)
C5—C6—H6 121.2 C8—C13—N2 119.58 (11)
C7—C6—H6 121.2 C1—N1—C2 110.13 (11)
C6—C7—C2 121.41 (14) O2—N2—O1 124.46 (15)
C6—C7—S1 129.23 (12) O2—N2—C13 118.28 (14)
C2—C7—S1 109.36 (10) O1—N2—C13 117.25 (13)
C13—C8—C9 117.22 (12) C7—S1—C1 88.91 (6)
N1—C2—C3—C4 179.67 (15) C10—C11—C12—C13 −1.0 (3)
C7—C2—C3—C4 −0.8 (2) C11—C12—C13—C8 1.4 (2)
C2—C3—C4—C5 0.3 (3) C11—C12—C13—N2 −174.13 (15)
C3—C4—C5—C6 0.4 (3) C9—C8—C13—C12 −0.9 (2)
C4—C5—C6—C7 −0.5 (3) C1—C8—C13—C12 178.36 (14)
C5—C6—C7—C2 0.0 (2) C9—C8—C13—N2 174.55 (14)
C5—C6—C7—S1 179.49 (13) C1—C8—C13—N2 −6.2 (2)
N1—C2—C7—C6 −179.77 (14) C8—C1—N1—C2 178.70 (12)
C3—C2—C7—C6 0.7 (2) S1—C1—N1—C2 −0.41 (15)
N1—C2—C7—S1 0.64 (16) C3—C2—N1—C1 179.35 (14)
C3—C2—C7—S1 −178.90 (11) C7—C2—N1—C1 −0.16 (17)
N1—C1—C8—C13 −47.3 (2) C12—C13—N2—O2 −52.8 (2)
S1—C1—C8—C13 131.81 (12) C8—C13—N2—O2 131.55 (16)
N1—C1—C8—C9 131.96 (15) C12—C13—N2—O1 125.64 (16)
S1—C1—C8—C9 −48.95 (18) C8—C13—N2—O1 −50.05 (19)
C13—C8—C9—C10 0.0 (2) C6—C7—S1—C1 179.76 (16)
C1—C8—C9—C10 −179.32 (14) C2—C7—S1—C1 −0.69 (11)
C8—C9—C10—C11 0.4 (3) N1—C1—S1—C7 0.67 (12)
C9—C10—C11—C12 0.1 (3) C8—C1—S1—C7 −178.49 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···O1i 0.93 2.51 3.236 (2) 135
C9—H9···Cg1ii 0.93 2.92 3.468 (2) 119
C10—H10···Cg2ii 0.93 2.90 3.536 (2) 127
C3—H3···Cg3iii 0.93 2.99 3.673 (2) 132

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, −y, −z+1; (iii) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6879).

References

  1. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Lakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259. [DOI] [PMC free article] [PubMed]
  4. Repiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process Res. Dev. 5, 519–527.
  5. Schwartz, A., Madan, P. B., Mohacsi, E., O–Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851–856.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Zhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029844/hb6879sup1.cif

e-68-o2362-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029844/hb6879Isup2.hkl

e-68-o2362-Isup2.hkl (156.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029844/hb6879Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES