Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 7;68(Pt 8):o2367–o2368. doi: 10.1107/S160053681203005X

10a-Hy­droxy-9-(4-meth­oxy­phen­yl)-3,4,5,6,7,8a,9,10a-octa­hydro-1H-xanthene-1,8(2H)-dione

Hoong-Kun Fun a,*,, Chin Wei Ooi a, B Palakshi Reddy b, V Vijayakumar b, S Sarveswari b
PMCID: PMC3414299  PMID: 22904832

Abstract

In the title compound, C20H22O5, the tetra­hydro­pyran, cyclo­hexene and cyclo­hexane rings of the xanthene ring system adopt half-chair, half-boat and chair conformations, respectively. The mean plane of the four roughly planar atoms of the tetra­hydro­pyran ring (r.m.s. deviation = 0.111 Å) forms a dihedral angle of 82.91 (4)° with the meth­oxy­benzene group. In the crystal, mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds into sheets lying parallel to the ac plane. The crystal is further consolidated by weak C—H⋯π inter­actions.

Related literature  

For background to the applications of xanthene, see: Menchen et al. (2003); Knight & Stephens (1989). For our previous studies in this area, see: Palakshi Reddy et al. (2010); Reddy et al. (2009). For ring conformations, see: Cremer & Pople (1975). For a related structure, see: Loh et al. (2011). For bond length data, see: Allen et al. (1987). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2367-scheme1.jpg

Experimental  

Crystal data  

  • C20H22O5

  • M r = 342.38

  • Orthorhombic, Inline graphic

  • a = 15.7611 (9) Å

  • b = 18.0089 (11) Å

  • c = 11.6451 (7) Å

  • V = 3305.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.48 × 0.23 × 0.11 mm

Data collection  

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.954, T max = 0.990

  • 97212 measured reflections

  • 7190 independent reflections

  • 6068 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.108

  • S = 1.05

  • 7190 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681203005X/hb6880sup1.cif

e-68-o2367-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203005X/hb6880Isup2.hkl

e-68-o2367-Isup2.hkl (351.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203005X/hb6880Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O3i 0.886 (17) 1.935 (17) 2.8156 (8) 172.0 (16)
C12—H12B⋯O4ii 0.99 2.50 3.1879 (9) 126
C12—H12ACg1iii 0.99 2.78 3.6557 (8) 147
C16—H16ACg1iv 0.99 2.78 3.7467 (8) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160. VV, SS and BPR are grateful to VIT University for providing facilities to carry out research work.

supplementary crystallographic information

Comment

Xanthene derivatives are important heterocyclic compounds: their uses vary from dyes (Menchen et al., 2003) to agricultural bactericides (Knight et al., 1989). In continuation of our earlier interest in 1,4-DHP's and piperidones (Palakshi Reddy et al. 2009; Palakshi Reddy et al. 2010), herein we report the crystal structure of the title compound.

In the title compound (Fig. 1), the xanthene ring system consists of three rings which adopt different conformations. The tetrahydropyran ring (O5/C8/C9/C14/C15/C20) adopts a half chair conformation with the puckering parameters Q = 0.4980 (7) Å, θ = 122.73 (8)°, φ = 104.23 (9)° (Cremer & Pople, 1975). The cyclohexene (C9–C14) and cyclohexane (C15–C20) rings adopt half boat and chair conformations with the puckering parameters Q = 0.4905 (8) Å, θ = 117.37 (9)°, φ = 349.74 (10)° and Q = 0.5575 (8) Å, θ = 176.39 (8)°, φ = 192.6 (13)° (Cremer & Pople, 1975), respectively. The mean plane of the tetrahydropyran ring [r.m.s deviation = 0.111 Å] forms a dihedral angle of 82.91 (4)° with the methoxyphenyl group (C1–C7/O1). The bond lengths and angles are comparable to those in a related structure (Loh et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular O4—H1O4···O3 and C12—H12B···O4 hydrogen bonds (Table 1) into two-dimensional networks parallel to the ac plane. The crystal structure is further consolidated by weak C—H···π interactions (Table 1), involving the centroid of the benzene ring (C2–C7; Cg1).

Experimental

A mixture of 4-methoxybenzaldehyde (1 mol) and 1,3-cyclohexanedione (2 mol) was refluxed in acetonitrile for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, it was kept for 2 days for solid formation. The pure product was obtained by recrystallization from acetonitrile in the form of colourless blocks. M.p.: 194–196°C; Yield 70%.

Refinement

Atom H1O4 was located from the difference map and was refined freely [O–H = 0.887 (17) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C–H = 0.95, 0.98, 0.99 and 1.00 Å). A rotating group model was applied to the methyl group. In the final refinement, one outlier (1 0 4) was omitted.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C20H22O5 F(000) = 1456
Mr = 342.38 Dx = 1.376 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 9871 reflections
a = 15.7611 (9) Å θ = 2.6–34.8°
b = 18.0089 (11) Å µ = 0.10 mm1
c = 11.6451 (7) Å T = 100 K
V = 3305.3 (3) Å3 Block, colourless
Z = 8 0.48 × 0.23 × 0.11 mm

Data collection

Bruker APEX DUO CCD diffractometer 7190 independent reflections
Radiation source: fine-focus sealed tube 6068 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
φ and ω scans θmax = 34.8°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −25→25
Tmin = 0.954, Tmax = 0.990 k = −28→28
97212 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.059P)2 + 0.8159P] where P = (Fo2 + 2Fc2)/3
7190 reflections (Δ/σ)max = 0.001
231 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.41955 (4) 0.43646 (3) −0.11953 (4) 0.01606 (10)
O2 0.12092 (4) 0.39264 (4) 0.24042 (6) 0.02378 (13)
O3 0.35506 (4) 0.19277 (3) 0.24263 (5) 0.01785 (11)
O4 0.18491 (3) 0.32355 (3) 0.50833 (5) 0.01370 (10)
O5 0.32107 (3) 0.36949 (3) 0.53699 (4) 0.01306 (10)
C1 0.38478 (5) 0.41214 (5) −0.22594 (6) 0.01835 (14)
H1A 0.4187 0.4321 −0.2894 0.028*
H1B 0.3262 0.4299 −0.2328 0.028*
H1C 0.3855 0.3578 −0.2289 0.028*
C2 0.38251 (4) 0.40829 (4) −0.02218 (5) 0.01168 (11)
C3 0.42230 (5) 0.42661 (4) 0.08114 (6) 0.01375 (12)
H3A 0.4718 0.4567 0.0811 0.016*
C4 0.38909 (4) 0.40059 (4) 0.18390 (6) 0.01299 (11)
H4A 0.4165 0.4130 0.2540 0.016*
C5 0.31611 (4) 0.35644 (4) 0.18628 (5) 0.01067 (11)
C6 0.27766 (4) 0.33891 (4) 0.08261 (6) 0.01223 (11)
H6A 0.2279 0.3092 0.0828 0.015*
C7 0.31024 (4) 0.36386 (4) −0.02199 (6) 0.01273 (11)
H7A 0.2834 0.3507 −0.0921 0.015*
C8 0.27857 (4) 0.33101 (4) 0.30012 (5) 0.01100 (11)
H8A 0.2310 0.2958 0.2841 0.013*
C9 0.34387 (4) 0.29187 (4) 0.37349 (5) 0.01071 (11)
C10 0.37999 (4) 0.22215 (4) 0.33249 (6) 0.01227 (11)
C11 0.44481 (5) 0.18319 (4) 0.40660 (6) 0.01532 (12)
H11A 0.4845 0.1553 0.3568 0.018*
H11B 0.4155 0.1470 0.4568 0.018*
C12 0.49507 (5) 0.23714 (4) 0.48070 (6) 0.01564 (12)
H12A 0.5300 0.2698 0.4312 0.019*
H12B 0.5337 0.2092 0.5320 0.019*
C13 0.43452 (4) 0.28408 (4) 0.55218 (6) 0.01375 (12)
H13A 0.4103 0.2532 0.6144 0.016*
H13B 0.4664 0.3253 0.5882 0.016*
C14 0.36412 (4) 0.31523 (4) 0.48106 (6) 0.01110 (11)
C15 0.23657 (4) 0.38542 (4) 0.49304 (6) 0.01137 (11)
C16 0.20491 (5) 0.45323 (4) 0.55788 (6) 0.01448 (12)
H16A 0.2459 0.4945 0.5488 0.017*
H16B 0.2004 0.4415 0.6407 0.017*
C17 0.11806 (5) 0.47705 (4) 0.51201 (7) 0.01725 (13)
H17A 0.1003 0.5234 0.5509 0.021*
H17B 0.0758 0.4382 0.5303 0.021*
C18 0.11950 (5) 0.48996 (5) 0.38134 (7) 0.02103 (15)
H18A 0.0610 0.4990 0.3537 0.025*
H18B 0.1538 0.5346 0.3640 0.025*
C19 0.15647 (5) 0.42367 (4) 0.31926 (6) 0.01632 (13)
C20 0.24286 (4) 0.39890 (4) 0.36411 (6) 0.01216 (11)
H20A 0.2833 0.4409 0.3521 0.015*
H1O4 0.1773 (11) 0.3167 (9) 0.5830 (15) 0.044 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0198 (2) 0.0200 (2) 0.0083 (2) −0.00409 (19) 0.00179 (17) 0.00088 (17)
O2 0.0187 (3) 0.0334 (3) 0.0192 (3) 0.0069 (2) −0.0042 (2) −0.0018 (2)
O3 0.0242 (3) 0.0162 (2) 0.0131 (2) 0.0013 (2) −0.00347 (19) −0.00439 (18)
O4 0.0146 (2) 0.0138 (2) 0.0126 (2) −0.00304 (16) 0.00192 (16) 0.00182 (17)
O5 0.0119 (2) 0.0149 (2) 0.0124 (2) 0.00174 (16) −0.00052 (16) −0.00358 (16)
C1 0.0258 (4) 0.0206 (3) 0.0086 (3) −0.0017 (3) 0.0007 (2) −0.0008 (2)
C2 0.0138 (3) 0.0127 (3) 0.0085 (2) 0.0004 (2) 0.00115 (19) 0.00019 (19)
C3 0.0145 (3) 0.0166 (3) 0.0101 (2) −0.0037 (2) 0.0003 (2) 0.0000 (2)
C4 0.0137 (3) 0.0161 (3) 0.0092 (2) −0.0031 (2) −0.0005 (2) −0.0003 (2)
C5 0.0116 (2) 0.0115 (2) 0.0089 (2) 0.00015 (19) 0.00017 (19) 0.00024 (19)
C6 0.0130 (3) 0.0134 (3) 0.0103 (2) −0.0016 (2) −0.00051 (19) −0.0007 (2)
C7 0.0144 (3) 0.0146 (3) 0.0092 (2) −0.0012 (2) −0.0010 (2) −0.0008 (2)
C8 0.0113 (2) 0.0122 (2) 0.0095 (2) −0.00026 (19) 0.00045 (19) 0.00068 (19)
C9 0.0119 (2) 0.0110 (2) 0.0093 (2) 0.00007 (19) 0.00030 (19) −0.00021 (19)
C10 0.0143 (3) 0.0119 (2) 0.0106 (2) −0.0004 (2) 0.0003 (2) −0.0001 (2)
C11 0.0182 (3) 0.0133 (3) 0.0145 (3) 0.0032 (2) −0.0021 (2) −0.0012 (2)
C12 0.0130 (3) 0.0175 (3) 0.0164 (3) 0.0025 (2) −0.0017 (2) −0.0023 (2)
C13 0.0128 (3) 0.0165 (3) 0.0119 (3) 0.0010 (2) −0.0021 (2) −0.0016 (2)
C14 0.0110 (2) 0.0116 (2) 0.0107 (2) −0.00030 (19) 0.00070 (19) −0.00083 (19)
C15 0.0111 (3) 0.0117 (2) 0.0114 (2) −0.00005 (19) 0.00047 (19) −0.0001 (2)
C16 0.0159 (3) 0.0133 (3) 0.0143 (3) 0.0013 (2) 0.0031 (2) −0.0016 (2)
C17 0.0165 (3) 0.0179 (3) 0.0173 (3) 0.0049 (2) 0.0041 (2) 0.0010 (2)
C18 0.0232 (3) 0.0223 (3) 0.0176 (3) 0.0103 (3) 0.0031 (3) 0.0032 (3)
C19 0.0157 (3) 0.0199 (3) 0.0133 (3) 0.0047 (2) 0.0021 (2) 0.0039 (2)
C20 0.0130 (3) 0.0132 (3) 0.0103 (2) 0.0011 (2) 0.0019 (2) 0.0011 (2)

Geometric parameters (Å, º)

O1—C2 1.3724 (8) C9—C14 1.3595 (9)
O1—C1 1.4240 (9) C9—C10 1.4590 (9)
O2—C19 1.2121 (10) C10—C11 1.5102 (10)
O3—C10 1.2366 (8) C11—C12 1.5220 (10)
O4—C15 1.3914 (8) C11—H11A 0.9900
O4—H1O4 0.887 (17) C11—H11B 0.9900
O5—C14 1.3561 (8) C12—C13 1.5225 (10)
O5—C15 1.4552 (8) C12—H12A 0.9900
C1—H1A 0.9800 C12—H12B 0.9900
C1—H1B 0.9800 C13—C14 1.4940 (10)
C1—H1C 0.9800 C13—H13A 0.9900
C2—C7 1.3919 (10) C13—H13B 0.9900
C2—C3 1.3963 (9) C15—C16 1.5201 (10)
C3—C4 1.3876 (9) C15—C20 1.5241 (9)
C3—H3A 0.9500 C16—C17 1.5306 (11)
C4—C5 1.3986 (9) C16—H16A 0.9900
C4—H4A 0.9500 C16—H16B 0.9900
C5—C6 1.3872 (9) C17—C18 1.5395 (11)
C5—C8 1.5223 (9) C17—H17A 0.9900
C6—C7 1.3961 (9) C17—H17B 0.9900
C6—H6A 0.9500 C18—C19 1.5124 (11)
C7—H7A 0.9500 C18—H18A 0.9900
C8—C9 1.5120 (9) C18—H18B 0.9900
C8—C20 1.5383 (9) C19—C20 1.5250 (10)
C8—H8A 1.0000 C20—H20A 1.0000
C2—O1—C1 116.20 (6) C13—C12—H12A 109.7
C15—O4—H1O4 108.5 (11) C11—C12—H12B 109.7
C14—O5—C15 115.53 (5) C13—C12—H12B 109.7
O1—C1—H1A 109.5 H12A—C12—H12B 108.2
O1—C1—H1B 109.5 C14—C13—C12 111.78 (6)
H1A—C1—H1B 109.5 C14—C13—H13A 109.3
O1—C1—H1C 109.5 C12—C13—H13A 109.3
H1A—C1—H1C 109.5 C14—C13—H13B 109.3
H1B—C1—H1C 109.5 C12—C13—H13B 109.3
O1—C2—C7 124.19 (6) H13A—C13—H13B 107.9
O1—C2—C3 115.68 (6) O5—C14—C9 123.23 (6)
C7—C2—C3 120.13 (6) O5—C14—C13 112.08 (6)
C4—C3—C2 119.60 (6) C9—C14—C13 124.67 (6)
C4—C3—H3A 120.2 O4—C15—O5 109.43 (5)
C2—C3—H3A 120.2 O4—C15—C16 112.80 (6)
C3—C4—C5 121.28 (6) O5—C15—C16 106.51 (5)
C3—C4—H4A 119.4 O4—C15—C20 106.96 (5)
C5—C4—H4A 119.4 O5—C15—C20 108.57 (5)
C6—C5—C4 118.13 (6) C16—C15—C20 112.50 (6)
C6—C5—C8 121.31 (6) C15—C16—C17 110.21 (6)
C4—C5—C8 120.53 (6) C15—C16—H16A 109.6
C5—C6—C7 121.69 (6) C17—C16—H16A 109.6
C5—C6—H6A 119.2 C15—C16—H16B 109.6
C7—C6—H6A 119.2 C17—C16—H16B 109.6
C2—C7—C6 119.17 (6) H16A—C16—H16B 108.1
C2—C7—H7A 120.4 C16—C17—C18 111.97 (6)
C6—C7—H7A 120.4 C16—C17—H17A 109.2
C9—C8—C5 111.58 (5) C18—C17—H17A 109.2
C9—C8—C20 110.23 (5) C16—C17—H17B 109.2
C5—C8—C20 108.97 (5) C18—C17—H17B 109.2
C9—C8—H8A 108.7 H17A—C17—H17B 107.9
C5—C8—H8A 108.7 C19—C18—C17 111.03 (6)
C20—C8—H8A 108.7 C19—C18—H18A 109.4
C14—C9—C10 118.45 (6) C17—C18—H18A 109.4
C14—C9—C8 122.42 (6) C19—C18—H18B 109.4
C10—C9—C8 118.81 (6) C17—C18—H18B 109.4
O3—C10—C9 121.41 (6) H18A—C18—H18B 108.0
O3—C10—C11 119.98 (6) O2—C19—C18 123.23 (7)
C9—C10—C11 118.47 (6) O2—C19—C20 122.49 (7)
C10—C11—C12 112.31 (6) C18—C19—C20 114.28 (6)
C10—C11—H11A 109.1 C15—C20—C19 109.02 (5)
C12—C11—H11A 109.1 C15—C20—C8 111.99 (5)
C10—C11—H11B 109.1 C19—C20—C8 113.16 (6)
C12—C11—H11B 109.1 C15—C20—H20A 107.5
H11A—C11—H11B 107.9 C19—C20—H20A 107.5
C11—C12—C13 109.76 (6) C8—C20—H20A 107.5
C11—C12—H12A 109.7
C1—O1—C2—C7 −5.83 (10) C10—C9—C14—O5 −165.29 (6)
C1—O1—C2—C3 173.89 (6) C8—C9—C14—O5 8.13 (10)
O1—C2—C3—C4 179.92 (6) C10—C9—C14—C13 13.68 (10)
C7—C2—C3—C4 −0.35 (11) C8—C9—C14—C13 −172.89 (6)
C2—C3—C4—C5 −0.24 (11) C12—C13—C14—O5 −166.48 (6)
C3—C4—C5—C6 0.28 (10) C12—C13—C14—C9 14.45 (10)
C3—C4—C5—C8 −177.51 (6) C14—O5—C15—O4 64.53 (7)
C4—C5—C6—C7 0.28 (10) C14—O5—C15—C16 −173.25 (6)
C8—C5—C6—C7 178.05 (6) C14—O5—C15—C20 −51.88 (7)
O1—C2—C7—C6 −179.41 (6) O4—C15—C16—C17 −63.35 (7)
C3—C2—C7—C6 0.89 (10) O5—C15—C16—C17 176.59 (5)
C5—C6—C7—C2 −0.86 (10) C20—C15—C16—C17 57.76 (8)
C6—C5—C8—C9 128.25 (7) C15—C16—C17—C18 −54.64 (8)
C4—C5—C8—C9 −54.04 (8) C16—C17—C18—C19 51.97 (9)
C6—C5—C8—C20 −109.80 (7) C17—C18—C19—O2 127.53 (8)
C4—C5—C8—C20 67.91 (8) C17—C18—C19—C20 −52.57 (9)
C5—C8—C9—C14 122.43 (7) O4—C15—C20—C19 67.95 (7)
C20—C8—C9—C14 1.21 (9) O5—C15—C20—C19 −174.06 (5)
C5—C8—C9—C10 −64.17 (8) C16—C15—C20—C19 −56.44 (7)
C20—C8—C9—C10 174.62 (6) O4—C15—C20—C8 −58.05 (7)
C14—C9—C10—O3 169.77 (7) O5—C15—C20—C8 59.94 (7)
C8—C9—C10—O3 −3.90 (10) C16—C15—C20—C8 177.56 (6)
C14—C9—C10—C11 −6.00 (9) O2—C19—C20—C15 −125.90 (8)
C8—C9—C10—C11 −179.66 (6) C18—C19—C20—C15 54.19 (8)
O3—C10—C11—C12 155.40 (7) O2—C19—C20—C8 −0.58 (10)
C9—C10—C11—C12 −28.78 (9) C18—C19—C20—C8 179.51 (6)
C10—C11—C12—C13 55.12 (8) C9—C8—C20—C15 −34.60 (7)
C11—C12—C13—C14 −47.83 (8) C5—C8—C20—C15 −157.37 (5)
C15—O5—C14—C9 18.89 (9) C9—C8—C20—C19 −158.31 (6)
C15—O5—C14—C13 −160.19 (6) C5—C8—C20—C19 78.92 (7)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C2–C7 ring.

D—H···A D—H H···A D···A D—H···A
O4—H1O4···O3i 0.886 (17) 1.935 (17) 2.8156 (8) 172.0 (16)
C12—H12B···O4ii 0.99 2.50 3.1879 (9) 126
C12—H12A···Cg1iii 0.99 2.78 3.6557 (8) 147
C16—H16A···Cg1iv 0.99 2.78 3.7467 (8) 165

Symmetry codes: (i) −x+1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, −z+1; (iii) x+3/2, −y+1/2, −z; (iv) −x−1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6880).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–689. [DOI] [PMC free article] [PubMed]
  6. Loh, W.-S., Fun, H.-K., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o35–o36. [DOI] [PMC free article] [PubMed]
  7. Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, J. Y. L., Sun, W., Rosenblum, D., Khan, B. B. & Taing, S. H. (2003). US Patent No. 6583168.
  8. Palakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806–o2807. [DOI] [PMC free article] [PubMed]
  9. Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681203005X/hb6880sup1.cif

e-68-o2367-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203005X/hb6880Isup2.hkl

e-68-o2367-Isup2.hkl (351.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203005X/hb6880Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES