Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 7;68(Pt 8):o2369. doi: 10.1107/S1600536812030346

(Z)-1-(4-Methyl­phen­yl)-2-(phenyl­sulfon­yl)ethanone oxime

Hoong-Kun Fun a,*,, Tze Shyang Chia a, Khalid A Al-Rashood b, Hatem A Abdel-Aziz b
PMCID: PMC3414300  PMID: 22904833

Abstract

The mol­ecule of the title compound, C15H15NO3S, has a twisted U-shaped conformation: the twist occurs at the central C—S(=O)2—C—C—C unit and the benzene ring makes a dihedral angle of 28.74 (7)° with the phenyl ring. The S—C—C=N torsion angle is −88.95 (13)°. In the crystal, inversion dimers linked by pairs of O—H⋯N hydrogen bonds generate R 2 2(6) loops, and C—H⋯O hydrogen bonds connect the dimers into a three-dimensional network.

Related literature  

For the biological activity of aryl­sulphones, see: Stephens et al. (2001); Abdel-Aziz et al. (2010). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2369-scheme1.jpg

Experimental  

Crystal data  

  • C15H15NO3S

  • M r = 289.34

  • Monoclinic, Inline graphic

  • a = 5.2305 (3) Å

  • b = 17.6073 (11) Å

  • c = 15.6578 (10) Å

  • β = 103.782 (2)°

  • V = 1400.49 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.29 × 0.09 × 0.06 mm

Data collection  

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.934, T max = 0.985

  • 16727 measured reflections

  • 4349 independent reflections

  • 3578 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.105

  • S = 1.03

  • 4349 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030346/hb6884sup1.cif

e-68-o2369-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030346/hb6884Isup2.hkl

e-68-o2369-Isup2.hkl (213.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030346/hb6884Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N1i 0.97 (2) 1.88 (2) 2.7819 (15) 153.8 (18)
C2—H2A⋯O2ii 0.93 2.53 3.2413 (18) 134
C3—H3A⋯O1iii 0.93 2.56 3.4720 (17) 169
C7—H7A⋯O1iv 0.97 2.34 3.2313 (14) 153
C15—H15B⋯O2v 0.96 2.54 3.426 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for financial support and facilities.

supplementary crystallographic information

Comment

Arylsulphones possess interesting biological activities (Stephens et al., 2001; Abdel-Aziz et al., 2010). As part of our studies in this area, we report herein the crystal structure of the title compound, (Z)-1-(4-methylphenyl)-2-(phenylsulfonyl)ethanone oxime.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts a twisted U-shaped conformation. The twist occurs at the central C6–S1–C7–C8–C9 unit and the C1–C6 benzene ring makes a dihedral angle of 28.74 (7)° with the C9–C14 phenyl ring.

In the crystal (Fig. 2), the molecules are linked by O3—H1O3···N1, C2—H2A···O2, C3—H3A···O1, C7—H7A···O1 and C15—H15B···O2 hydrogen bonds (Table 1) into a three-dimensional network.

Experimental

A mixture of 2-(phenylsulfonyl)-1-p-tolylethanone (0.274 g, 1 mmol), hydroxylamine hydrochloride (0.11 g, 1.5 mmol) and anhydrous sodium acetate (0.123 g, 1.5 mmol) in ethanol (50 ml) was refluxed for 1 h, then left to cool. The reaction mixture was poured into cold water and the solid product was filtered off, washed with water, dried and finally recrystallized from ethanol to afford the title compound as yellow needles.

Refinement

Atom H1O3 was located in a difference fourier map and refined freely [O3—H1O3 = 0.96 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93, 0.96 and 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C15H15NO3S F(000) = 608
Mr = 289.34 Dx = 1.372 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5520 reflections
a = 5.2305 (3) Å θ = 2.3–30.7°
b = 17.6073 (11) Å µ = 0.24 mm1
c = 15.6578 (10) Å T = 100 K
β = 103.782 (2)° Needle, yellow
V = 1400.49 (15) Å3 0.29 × 0.09 × 0.06 mm
Z = 4

Data collection

Bruker APEX DUO CCD diffractometer 4349 independent reflections
Radiation source: fine-focus sealed tube 3578 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 30.8°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→7
Tmin = 0.934, Tmax = 0.985 k = −21→25
16727 measured reflections l = −16→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.6281P] where P = (Fo2 + 2Fc2)/3
4349 reflections (Δ/σ)max = 0.001
186 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.56144 (5) 0.782145 (17) 0.384686 (18) 0.01353 (8)
O1 0.83354 (16) 0.79802 (6) 0.38609 (6) 0.01848 (19)
O2 0.50126 (19) 0.71628 (5) 0.43065 (6) 0.0208 (2)
O3 0.86263 (19) 0.92446 (6) 0.52121 (6) 0.0218 (2)
N1 0.7376 (2) 0.96756 (6) 0.44763 (7) 0.0177 (2)
C1 0.4951 (3) 0.81035 (9) 0.20998 (9) 0.0239 (3)
H1A 0.6457 0.8401 0.2263 0.029*
C2 0.3699 (3) 0.80091 (11) 0.12183 (9) 0.0319 (3)
H2A 0.4350 0.8249 0.0785 0.038*
C3 0.1472 (3) 0.75546 (11) 0.09865 (10) 0.0329 (4)
H3A 0.0655 0.7485 0.0396 0.039*
C4 0.0457 (3) 0.72046 (10) 0.16220 (10) 0.0303 (3)
H4A −0.1042 0.6905 0.1456 0.036*
C5 0.1662 (2) 0.72973 (8) 0.25099 (9) 0.0214 (3)
H5A 0.0981 0.7066 0.2942 0.026*
C6 0.3915 (2) 0.77457 (7) 0.27336 (8) 0.0164 (2)
C7 0.4295 (2) 0.86214 (7) 0.43094 (8) 0.0154 (2)
H7A 0.2388 0.8605 0.4130 0.018*
H7B 0.4803 0.8586 0.4946 0.018*
C8 0.5234 (2) 0.93671 (7) 0.40293 (8) 0.0153 (2)
C9 0.3773 (2) 0.97524 (7) 0.32203 (8) 0.0168 (2)
C10 0.4854 (3) 1.03660 (9) 0.28673 (11) 0.0303 (3)
H10A 0.6487 1.0555 0.3160 0.036*
C11 0.3522 (3) 1.06969 (10) 0.20849 (11) 0.0349 (4)
H11A 0.4286 1.1106 0.1863 0.042*
C12 0.1092 (3) 1.04366 (8) 0.16238 (9) 0.0255 (3)
C13 0.0000 (3) 0.98351 (10) 0.19822 (11) 0.0325 (3)
H13A −0.1644 0.9652 0.1690 0.039*
C14 0.1302 (3) 0.94978 (9) 0.27687 (10) 0.0283 (3)
H14A 0.0512 0.9097 0.2996 0.034*
C15 −0.0305 (4) 1.07962 (10) 0.07609 (11) 0.0353 (4)
H15A 0.0951 1.0911 0.0422 0.053*
H15B −0.1154 1.1256 0.0875 0.053*
H15C −0.1600 1.0450 0.0439 0.053*
H1O3 1.021 (4) 0.9523 (12) 0.5474 (13) 0.040 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01289 (12) 0.01713 (15) 0.00974 (13) −0.00179 (9) 0.00102 (9) −0.00080 (10)
O1 0.0124 (3) 0.0265 (5) 0.0157 (4) −0.0008 (3) 0.0017 (3) −0.0018 (4)
O2 0.0274 (5) 0.0191 (5) 0.0158 (4) −0.0032 (4) 0.0050 (3) 0.0019 (4)
O3 0.0217 (4) 0.0216 (5) 0.0176 (5) −0.0041 (4) −0.0045 (3) 0.0019 (4)
N1 0.0169 (4) 0.0175 (5) 0.0162 (5) −0.0011 (4) −0.0014 (4) −0.0007 (4)
C1 0.0232 (6) 0.0341 (8) 0.0139 (6) −0.0006 (5) 0.0036 (5) −0.0002 (5)
C2 0.0334 (7) 0.0499 (10) 0.0114 (6) 0.0084 (7) 0.0033 (5) 0.0008 (6)
C3 0.0275 (6) 0.0521 (10) 0.0142 (6) 0.0124 (7) −0.0047 (5) −0.0123 (7)
C4 0.0181 (6) 0.0409 (9) 0.0274 (8) 0.0022 (5) −0.0037 (5) −0.0171 (7)
C5 0.0159 (5) 0.0267 (7) 0.0206 (6) −0.0008 (5) 0.0019 (4) −0.0079 (5)
C6 0.0148 (5) 0.0219 (6) 0.0113 (5) 0.0005 (4) 0.0005 (4) −0.0032 (5)
C7 0.0143 (4) 0.0191 (6) 0.0128 (5) −0.0023 (4) 0.0033 (4) −0.0019 (4)
C8 0.0140 (5) 0.0163 (6) 0.0150 (5) −0.0008 (4) 0.0025 (4) −0.0029 (4)
C9 0.0170 (5) 0.0163 (6) 0.0161 (6) 0.0015 (4) 0.0018 (4) −0.0025 (5)
C10 0.0296 (7) 0.0260 (8) 0.0290 (8) −0.0092 (6) −0.0057 (6) 0.0067 (6)
C11 0.0402 (8) 0.0265 (8) 0.0327 (8) −0.0056 (6) −0.0021 (6) 0.0115 (7)
C12 0.0322 (7) 0.0206 (7) 0.0201 (6) 0.0107 (5) −0.0008 (5) −0.0014 (5)
C13 0.0256 (6) 0.0333 (8) 0.0303 (8) 0.0002 (6) −0.0099 (5) 0.0050 (7)
C14 0.0209 (6) 0.0286 (8) 0.0299 (8) −0.0052 (5) −0.0047 (5) 0.0072 (6)
C15 0.0474 (9) 0.0279 (8) 0.0243 (8) 0.0146 (7) −0.0037 (6) 0.0014 (6)

Geometric parameters (Å, º)

S1—O2 1.4386 (10) C7—C8 1.5034 (17)
S1—O1 1.4454 (9) C7—H7A 0.9700
S1—C6 1.7630 (12) C7—H7B 0.9700
S1—C7 1.7951 (13) C8—C9 1.4791 (17)
O3—N1 1.4042 (14) C9—C14 1.3913 (17)
O3—H1O3 0.96 (2) C9—C10 1.393 (2)
N1—C8 1.2910 (15) C10—C11 1.385 (2)
C1—C2 1.3896 (19) C10—H10A 0.9300
C1—C6 1.3898 (18) C11—C12 1.382 (2)
C1—H1A 0.9300 C11—H11A 0.9300
C2—C3 1.388 (2) C12—C13 1.384 (2)
C2—H2A 0.9300 C12—C15 1.513 (2)
C3—C4 1.380 (2) C13—C14 1.390 (2)
C3—H3A 0.9300 C13—H13A 0.9300
C4—C5 1.3925 (19) C14—H14A 0.9300
C4—H4A 0.9300 C15—H15A 0.9600
C5—C6 1.3918 (17) C15—H15B 0.9600
C5—H5A 0.9300 C15—H15C 0.9600
O2—S1—O1 118.71 (6) S1—C7—H7B 109.1
O2—S1—C6 108.34 (6) H7A—C7—H7B 107.8
O1—S1—C6 107.00 (6) N1—C8—C9 118.42 (12)
O2—S1—C7 106.24 (6) N1—C8—C7 120.73 (11)
O1—S1—C7 108.29 (6) C9—C8—C7 120.82 (10)
C6—S1—C7 107.85 (6) C14—C9—C10 117.63 (12)
N1—O3—H1O3 105.0 (12) C14—C9—C8 121.03 (12)
C8—N1—O3 113.06 (11) C10—C9—C8 121.31 (11)
C2—C1—C6 118.90 (14) C11—C10—C9 120.72 (13)
C2—C1—H1A 120.6 C11—C10—H10A 119.6
C6—C1—H1A 120.6 C9—C10—H10A 119.6
C3—C2—C1 119.75 (15) C12—C11—C10 121.92 (15)
C3—C2—H2A 120.1 C12—C11—H11A 119.0
C1—C2—H2A 120.1 C10—C11—H11A 119.0
C4—C3—C2 120.79 (13) C11—C12—C13 117.32 (13)
C4—C3—H3A 119.6 C11—C12—C15 121.08 (15)
C2—C3—H3A 119.6 C13—C12—C15 121.60 (14)
C3—C4—C5 120.48 (14) C12—C13—C14 121.57 (14)
C3—C4—H4A 119.8 C12—C13—H13A 119.2
C5—C4—H4A 119.8 C14—C13—H13A 119.2
C6—C5—C4 118.19 (14) C13—C14—C9 120.81 (14)
C6—C5—H5A 120.9 C13—C14—H14A 119.6
C4—C5—H5A 120.9 C9—C14—H14A 119.6
C1—C6—C5 121.87 (12) C12—C15—H15A 109.5
C1—C6—S1 118.76 (10) C12—C15—H15B 109.5
C5—C6—S1 119.27 (10) H15A—C15—H15B 109.5
C8—C7—S1 112.57 (8) C12—C15—H15C 109.5
C8—C7—H7A 109.1 H15A—C15—H15C 109.5
S1—C7—H7A 109.1 H15B—C15—H15C 109.5
C8—C7—H7B 109.1
C6—C1—C2—C3 −0.8 (2) O3—N1—C8—C7 0.08 (16)
C1—C2—C3—C4 1.1 (2) S1—C7—C8—N1 −88.95 (13)
C2—C3—C4—C5 −0.4 (2) S1—C7—C8—C9 89.10 (12)
C3—C4—C5—C6 −0.5 (2) N1—C8—C9—C14 −172.31 (13)
C2—C1—C6—C5 −0.1 (2) C7—C8—C9—C14 9.59 (19)
C2—C1—C6—S1 176.35 (12) N1—C8—C9—C10 9.84 (19)
C4—C5—C6—C1 0.7 (2) C7—C8—C9—C10 −168.25 (13)
C4—C5—C6—S1 −175.68 (11) C14—C9—C10—C11 −1.3 (2)
O2—S1—C6—C1 −152.81 (11) C8—C9—C10—C11 176.65 (15)
O1—S1—C6—C1 −23.72 (13) C9—C10—C11—C12 −0.1 (3)
C7—S1—C6—C1 92.59 (11) C10—C11—C12—C13 1.1 (3)
O2—S1—C6—C5 23.70 (12) C10—C11—C12—C15 −178.77 (16)
O1—S1—C6—C5 152.79 (10) C11—C12—C13—C14 −0.8 (3)
C7—S1—C6—C5 −90.91 (11) C15—C12—C13—C14 179.06 (15)
O2—S1—C7—C8 168.32 (8) C12—C13—C14—C9 −0.5 (3)
O1—S1—C7—C8 39.77 (10) C10—C9—C14—C13 1.5 (2)
C6—S1—C7—C8 −75.70 (9) C8—C9—C14—C13 −176.38 (14)
O3—N1—C8—C9 −178.02 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H1O3···N1i 0.97 (2) 1.88 (2) 2.7819 (15) 153.8 (18)
C2—H2A···O2ii 0.93 2.53 3.2413 (18) 134
C3—H3A···O1iii 0.93 2.56 3.4720 (17) 169
C7—H7A···O1iv 0.97 2.34 3.2313 (14) 153
C15—H15B···O2v 0.96 2.54 3.426 (2) 154

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x−1, −y+3/2, z−1/2; (iv) x−1, y, z; (v) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6884).

References

  1. Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Stephens, C. E., Felder, T. M., Sowell, J. W., Andrei, G., Balzarini, J., Snoeck, R. & De Clercq, E. (2001). Bioorg. Med. Chem. 9, 1123–1132. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030346/hb6884sup1.cif

e-68-o2369-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030346/hb6884Isup2.hkl

e-68-o2369-Isup2.hkl (213.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030346/hb6884Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES