Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 7;68(Pt 8):o2378. doi: 10.1107/S1600536812030139

(2E)-1-(4,4′′-Difluoro-5′-meth­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-[4-(methyl­sulfan­yl)phen­yl]prop-2-en-1-one

Rajni Kant a,*, Vivek K Gupta a, Kamini Kapoor a, S Samshuddin b, B Narayana b
PMCID: PMC3414306  PMID: 22904839

Abstract

In the title compound, C29H22F2O2S, the central benzene ring makes dihedral angles of 45.83 (7), 38.90 (7) and 55.50 (7)° with the two fluoro-substituted benzene rings and the methyl­sulfanyl-substituted benzene ring, respectively. In the crystal, C—H⋯O contacts connect the mol­ecules into layers lying perpendicular to the c axis. In addition, π–π stacking inter­actions between one of the fluoro­phenyl groups [centroid–centroid distances = 3.681 (1) and 3.818 (1) Å] are observed.

Related literature  

For the pharmacological importance of terphenyls, see: Liu (2006); Gill & Steglich (1987). For related structures and background to terphenyl chalcones, see: Fun et al. (2011); Fun, Loh et al. (2012); Fun, Hemamalini et al. (2012); Samshuddin et al. (2012).graphic file with name e-68-o2378-scheme1.jpg

Experimental  

Crystal data  

  • C29H22F2O2S

  • M r = 472.53

  • Triclinic, Inline graphic

  • a = 6.9341 (3) Å

  • b = 11.4440 (4) Å

  • c = 15.4719 (5) Å

  • α = 89.611 (3)°

  • β = 84.738 (3)°

  • γ = 74.981 (3)°

  • V = 1180.63 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.743, T max = 1.000

  • 17866 measured reflections

  • 4637 independent reflections

  • 2891 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.142

  • S = 1.06

  • 4637 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812030139/gk2507sup1.cif

e-68-o2378-sup1.cif (30KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030139/gk2507Isup2.hkl

e-68-o2378-Isup2.hkl (222.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030139/gk2507Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.47 3.289 (3) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003. BN thanks the UGC for financial assistance through BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

supplementary crystallographic information

Comment

The pharmacological importance of terphenyls is well documented (Gill & Steglich, 1987; Liu, 2006). The crystal structure of some terphenyl chalcones, viz. (E)-1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-(6-methoxy naphthalen-2-yl)prop-2-en-1-one (Fun et al., 2011), (2E)-1- (4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-(2-fluorophenyl) prop-2-en-1-one (Fun, Hemamalini et al., 2012) and (E)-3-(2-chlorophenyl) -1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)prop-2-en-1-one (Samshuddin et al., 2012) have been reported. In view of the importance of terphenyls, the title compound (I) was prepared from 4,4'-difluoro chalcone by several steps (Fun, Loh et al., 2012) and its crystal structure is reported here.

All bond lengths and angles are normal and correspond to those observed in related structures. The central benzene ring forms dihedral angles of 45.83 (7), 38.90 (7) and 55.50 (7) ° with the two fluoro- substituted benzene rings and methylsulfanyl substituted benzene ring, respectively. In the crystal, molecules are connected via intermolecular C—H···O hydrogen bonds (Fig.2) to form layers. The crystal structure is further stabilized by π-π interactions between the benzene ring (C10—C15) of the molecule at (x, y, z) and the same benzene ring of inversion related molecules at (2 - x, -1 - y, -z) [centroid separation = 3.681 (1) Å, interplanar spacing = 3.512 Å and centroid shift = 1.102 Å] and (1 - x, -1 - y, -z) [centroid separation = 3.818 (1) Å, interplanar spacing = 3.379 Å and centroid shift = 1.777 Å].

Experimental

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)ethanone (0.338 g, 001 mol) and 4-(methylsulfanyl)benzaldehyde (0.152 g, 0.001 mol) in 30 ml ethanol, 0.5 ml of 10% sodium hydroxide solution was added and the reaction mixture was stirred at 5–10°C for 3 hrs. The precipitate formed was collected by filtration and purified by recrystallization from ethanol ( yield 72%; m.p. 407 K). Single-crystal was grown from DMF by slow evaporation method.

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis.

Crystal data

C29H22F2O2S Z = 2
Mr = 472.53 F(000) = 492
Triclinic, P1 Dx = 1.329 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9341 (3) Å Cell parameters from 6989 reflections
b = 11.4440 (4) Å θ = 3.4–29.0°
c = 15.4719 (5) Å µ = 0.18 mm1
α = 89.611 (3)° T = 293 K
β = 84.738 (3)° Block, colourless
γ = 74.981 (3)° 0.3 × 0.2 × 0.1 mm
V = 1180.63 (8) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 4637 independent reflections
Radiation source: fine-focus sealed tube 2891 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.4°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −14→14
Tmin = 0.743, Tmax = 1.000 l = −19→18
17866 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.050P)2 + 0.1774P] where P = (Fo2 + 2Fc2)/3
4637 reflections (Δ/σ)max = 0.001
309 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.40890 (12) 0.64035 (8) 0.44889 (6) 0.0889 (3)
O1 0.7122 (3) 0.17723 (16) 0.18542 (13) 0.0650 (5)
O2 0.3175 (2) 0.07240 (15) 0.09901 (11) 0.0553 (5)
F1 0.8319 (2) −0.69853 (13) −0.03117 (11) 0.0751 (5)
F2 1.3029 (2) −0.00661 (17) 0.42397 (11) 0.0909 (6)
C1 0.5711 (3) 0.1332 (2) 0.20122 (15) 0.0442 (6)
C2 0.3756 (3) 0.2042 (2) 0.24325 (15) 0.0480 (6)
H2 0.2724 0.1664 0.2544 0.058*
C3 0.3434 (4) 0.3184 (2) 0.26524 (16) 0.0530 (6)
H3 0.4496 0.3532 0.2521 0.064*
C4 0.5921 (3) 0.00322 (19) 0.17939 (14) 0.0372 (5)
C5 0.4622 (3) −0.0251 (2) 0.12300 (14) 0.0399 (5)
C6 0.4896 (3) −0.1416 (2) 0.09174 (14) 0.0395 (5)
H6 0.4048 −0.1577 0.0528 0.047*
C7 0.6436 (3) −0.2346 (2) 0.11840 (14) 0.0380 (5)
C8 0.7656 (3) −0.2085 (2) 0.17810 (14) 0.0399 (5)
H8 0.8633 −0.2714 0.1989 0.048*
C9 0.7460 (3) −0.0909 (2) 0.20762 (14) 0.0375 (5)
C10 0.6860 (3) −0.3577 (2) 0.08015 (15) 0.0397 (5)
C11 0.7337 (3) −0.4601 (2) 0.13080 (17) 0.0497 (6)
H11 0.7335 −0.4513 0.1905 0.060*
C12 0.7817 (3) −0.5751 (2) 0.0935 (2) 0.0566 (7)
H12 0.8123 −0.6435 0.1276 0.068*
C13 0.7829 (3) −0.5854 (2) 0.00604 (19) 0.0508 (7)
C14 0.7387 (3) −0.4878 (2) −0.04658 (17) 0.0508 (6)
H14 0.7423 −0.4979 −0.1064 0.061*
C15 0.6882 (3) −0.3735 (2) −0.00880 (16) 0.0450 (6)
H15 0.6552 −0.3060 −0.0436 0.054*
C16 0.8901 (3) −0.0692 (2) 0.26791 (14) 0.0403 (5)
C17 1.0920 (3) −0.1319 (2) 0.25431 (16) 0.0468 (6)
H17 1.1337 −0.1881 0.2088 0.056*
C18 1.2309 (4) −0.1124 (2) 0.30686 (17) 0.0551 (7)
H18 1.3654 −0.1544 0.2974 0.066*
C19 1.1654 (4) −0.0298 (3) 0.37315 (18) 0.0591 (7)
C20 0.9699 (4) 0.0323 (3) 0.38994 (17) 0.0588 (7)
H20 0.9303 0.0883 0.4356 0.071*
C21 0.8313 (4) 0.0105 (2) 0.33757 (16) 0.0502 (6)
H21 0.6964 0.0501 0.3495 0.060*
C22 0.1589 (4) 0.3980 (2) 0.30834 (16) 0.0508 (6)
C23 −0.0195 (4) 0.3617 (2) 0.32391 (18) 0.0600 (7)
H23 −0.0242 0.2856 0.3051 0.072*
C24 −0.1874 (4) 0.4378 (3) 0.36682 (18) 0.0637 (8)
H24 −0.3044 0.4124 0.3764 0.076*
C25 −0.1853 (4) 0.5513 (2) 0.39591 (17) 0.0582 (7)
C26 −0.0107 (4) 0.5880 (3) 0.3797 (2) 0.0715 (8)
H26 −0.0070 0.6646 0.3979 0.086*
C27 0.1582 (4) 0.5120 (2) 0.3369 (2) 0.0682 (8)
H27 0.2743 0.5383 0.3270 0.082*
C28 −0.3394 (5) 0.7674 (3) 0.4870 (2) 0.0957 (11)
H28A −0.2290 0.7409 0.5218 0.144*
H28B −0.4512 0.8188 0.5213 0.144*
H28C −0.3002 0.8116 0.4384 0.144*
C29 0.1591 (3) 0.0508 (2) 0.05390 (17) 0.0576 (7)
H29A 0.2128 0.0144 −0.0018 0.086*
H29B 0.0621 0.1261 0.0463 0.086*
H29C 0.0959 −0.0027 0.0870 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0759 (6) 0.0692 (6) 0.1064 (7) 0.0019 (4) 0.0114 (5) −0.0202 (5)
O1 0.0592 (11) 0.0438 (11) 0.0934 (14) −0.0207 (9) 0.0062 (10) 0.0036 (10)
O2 0.0536 (10) 0.0405 (10) 0.0678 (12) 0.0007 (8) −0.0225 (8) −0.0004 (9)
F1 0.0679 (10) 0.0393 (9) 0.1142 (14) −0.0066 (7) −0.0084 (9) −0.0239 (9)
F2 0.0848 (12) 0.1172 (16) 0.0862 (13) −0.0433 (11) −0.0390 (10) −0.0052 (11)
C1 0.0496 (14) 0.0346 (14) 0.0472 (14) −0.0087 (11) −0.0048 (11) 0.0046 (11)
C2 0.0528 (14) 0.0345 (14) 0.0549 (15) −0.0090 (11) −0.0030 (11) 0.0009 (12)
C3 0.0559 (15) 0.0407 (15) 0.0605 (17) −0.0097 (12) −0.0042 (12) −0.0028 (13)
C4 0.0384 (12) 0.0306 (12) 0.0412 (13) −0.0082 (9) 0.0016 (9) −0.0017 (10)
C5 0.0348 (11) 0.0359 (13) 0.0457 (14) −0.0037 (10) −0.0034 (10) 0.0025 (11)
C6 0.0364 (12) 0.0385 (14) 0.0431 (13) −0.0082 (10) −0.0059 (10) 0.0010 (11)
C7 0.0358 (12) 0.0339 (13) 0.0438 (13) −0.0090 (9) −0.0010 (9) 0.0009 (10)
C8 0.0375 (12) 0.0317 (13) 0.0478 (14) −0.0035 (9) −0.0064 (10) 0.0022 (11)
C9 0.0349 (11) 0.0361 (13) 0.0403 (13) −0.0083 (9) 0.0010 (9) 0.0004 (10)
C10 0.0312 (11) 0.0338 (13) 0.0546 (15) −0.0082 (9) −0.0066 (10) −0.0004 (11)
C11 0.0509 (14) 0.0405 (15) 0.0583 (16) −0.0124 (11) −0.0060 (11) 0.0016 (13)
C12 0.0520 (15) 0.0340 (15) 0.084 (2) −0.0098 (11) −0.0099 (13) 0.0075 (14)
C13 0.0366 (13) 0.0338 (14) 0.081 (2) −0.0063 (10) −0.0062 (12) −0.0131 (14)
C14 0.0450 (14) 0.0481 (16) 0.0590 (16) −0.0112 (11) −0.0055 (11) −0.0122 (13)
C15 0.0420 (13) 0.0377 (14) 0.0559 (16) −0.0096 (10) −0.0097 (11) 0.0001 (12)
C16 0.0423 (12) 0.0379 (13) 0.0424 (13) −0.0138 (10) −0.0034 (10) 0.0026 (11)
C17 0.0427 (13) 0.0485 (15) 0.0499 (15) −0.0131 (11) −0.0036 (10) −0.0011 (12)
C18 0.0433 (14) 0.0634 (18) 0.0608 (17) −0.0160 (12) −0.0108 (12) 0.0088 (14)
C19 0.0631 (17) 0.068 (2) 0.0560 (17) −0.0301 (15) −0.0213 (13) 0.0079 (15)
C20 0.0731 (18) 0.0593 (18) 0.0465 (15) −0.0198 (14) −0.0109 (13) −0.0065 (13)
C21 0.0500 (14) 0.0500 (16) 0.0493 (15) −0.0111 (11) −0.0033 (11) −0.0011 (12)
C22 0.0557 (15) 0.0361 (15) 0.0570 (16) −0.0041 (11) −0.0084 (12) −0.0019 (12)
C23 0.0672 (17) 0.0413 (16) 0.0694 (19) −0.0096 (13) −0.0077 (14) −0.0066 (14)
C24 0.0596 (16) 0.0539 (18) 0.074 (2) −0.0105 (14) −0.0006 (14) −0.0030 (15)
C25 0.0642 (17) 0.0488 (17) 0.0535 (17) −0.0005 (13) −0.0042 (12) −0.0051 (13)
C26 0.078 (2) 0.0461 (18) 0.087 (2) −0.0097 (15) −0.0068 (16) −0.0193 (16)
C27 0.0633 (17) 0.0477 (17) 0.091 (2) −0.0124 (14) 0.0013 (15) −0.0157 (16)
C28 0.117 (3) 0.065 (2) 0.090 (3) −0.0009 (19) 0.004 (2) −0.020 (2)
C29 0.0407 (13) 0.0608 (18) 0.0663 (18) −0.0009 (12) −0.0153 (12) 0.0047 (14)

Geometric parameters (Å, º)

S1—C25 1.753 (3) C14—C15 1.382 (3)
S1—C28 1.767 (3) C14—H14 0.9300
O1—C1 1.217 (3) C15—H15 0.9300
O2—C5 1.368 (3) C16—C21 1.378 (3)
O2—C29 1.428 (3) C16—C17 1.395 (3)
F1—C13 1.367 (3) C17—C18 1.377 (3)
F2—C19 1.367 (3) C17—H17 0.9300
C1—C2 1.482 (3) C18—C19 1.363 (4)
C1—C4 1.494 (3) C18—H18 0.9300
C2—C3 1.310 (3) C19—C20 1.360 (4)
C2—H2 0.9300 C20—C21 1.383 (3)
C3—C22 1.470 (3) C20—H20 0.9300
C3—H3 0.9300 C21—H21 0.9300
C4—C9 1.404 (3) C22—C27 1.378 (3)
C4—C5 1.406 (3) C22—C23 1.404 (3)
C5—C6 1.381 (3) C23—C24 1.377 (3)
C6—C7 1.389 (3) C23—H23 0.9300
C6—H6 0.9300 C24—C25 1.381 (4)
C7—C8 1.392 (3) C24—H24 0.9300
C7—C10 1.479 (3) C25—C26 1.382 (4)
C8—C9 1.393 (3) C26—C27 1.380 (4)
C8—H8 0.9300 C26—H26 0.9300
C9—C16 1.494 (3) C27—H27 0.9300
C10—C15 1.387 (3) C28—H28A 0.9600
C10—C11 1.389 (3) C28—H28B 0.9600
C11—C12 1.387 (3) C28—H28C 0.9600
C11—H11 0.9300 C29—H29A 0.9600
C12—C13 1.358 (4) C29—H29B 0.9600
C12—H12 0.9300 C29—H29C 0.9600
C13—C14 1.364 (3)
C25—S1—C28 103.53 (15) C21—C16—C9 122.5 (2)
C5—O2—C29 118.40 (19) C17—C16—C9 119.5 (2)
O1—C1—C2 122.0 (2) C18—C17—C16 121.4 (2)
O1—C1—C4 120.2 (2) C18—C17—H17 119.3
C2—C1—C4 117.7 (2) C16—C17—H17 119.3
C3—C2—C1 122.1 (2) C19—C18—C17 118.0 (2)
C3—C2—H2 118.9 C19—C18—H18 121.0
C1—C2—H2 118.9 C17—C18—H18 121.0
C2—C3—C22 127.5 (2) C20—C19—C18 122.9 (2)
C2—C3—H3 116.2 C20—C19—F2 118.5 (3)
C22—C3—H3 116.2 C18—C19—F2 118.5 (2)
C9—C4—C5 118.7 (2) C19—C20—C21 118.5 (2)
C9—C4—C1 122.53 (19) C19—C20—H20 120.7
C5—C4—C1 118.6 (2) C21—C20—H20 120.7
O2—C5—C6 124.1 (2) C16—C21—C20 121.0 (2)
O2—C5—C4 114.4 (2) C16—C21—H21 119.5
C6—C5—C4 121.4 (2) C20—C21—H21 119.5
C5—C6—C7 120.0 (2) C27—C22—C23 117.6 (2)
C5—C6—H6 120.0 C27—C22—C3 120.0 (2)
C7—C6—H6 120.0 C23—C22—C3 122.4 (2)
C6—C7—C8 118.8 (2) C24—C23—C22 120.6 (2)
C6—C7—C10 120.8 (2) C24—C23—H23 119.7
C8—C7—C10 120.2 (2) C22—C23—H23 119.7
C7—C8—C9 122.0 (2) C23—C24—C25 121.2 (3)
C7—C8—H8 119.0 C23—C24—H24 119.4
C9—C8—H8 119.0 C25—C24—H24 119.4
C8—C9—C4 118.9 (2) C24—C25—C26 118.4 (2)
C8—C9—C16 118.8 (2) C24—C25—S1 117.0 (2)
C4—C9—C16 122.3 (2) C26—C25—S1 124.6 (2)
C15—C10—C11 118.3 (2) C27—C26—C25 120.7 (3)
C15—C10—C7 120.1 (2) C27—C26—H26 119.7
C11—C10—C7 121.5 (2) C25—C26—H26 119.7
C12—C11—C10 120.9 (2) C22—C27—C26 121.6 (3)
C12—C11—H11 119.5 C22—C27—H27 119.2
C10—C11—H11 119.5 C26—C27—H27 119.2
C13—C12—C11 118.4 (3) S1—C28—H28A 109.5
C13—C12—H12 120.8 S1—C28—H28B 109.5
C11—C12—H12 120.8 H28A—C28—H28B 109.5
C12—C13—C14 122.9 (2) S1—C28—H28C 109.5
C12—C13—F1 118.7 (2) H28A—C28—H28C 109.5
C14—C13—F1 118.4 (2) H28B—C28—H28C 109.5
C13—C14—C15 118.3 (2) O2—C29—H29A 109.5
C13—C14—H14 120.9 O2—C29—H29B 109.5
C15—C14—H14 120.9 H29A—C29—H29B 109.5
C14—C15—C10 121.2 (2) O2—C29—H29C 109.5
C14—C15—H15 119.4 H29A—C29—H29C 109.5
C10—C15—H15 119.4 H29B—C29—H29C 109.5
C21—C16—C17 118.1 (2)
O1—C1—C2—C3 0.4 (4) C12—C13—C14—C15 −0.7 (3)
C4—C1—C2—C3 179.6 (2) F1—C13—C14—C15 179.68 (18)
C1—C2—C3—C22 −178.9 (2) C13—C14—C15—C10 1.2 (3)
O1—C1—C4—C9 53.5 (3) C11—C10—C15—C14 −0.7 (3)
C2—C1—C4—C9 −125.7 (2) C7—C10—C15—C14 176.28 (19)
O1—C1—C4—C5 −121.5 (2) C8—C9—C16—C21 −140.0 (2)
C2—C1—C4—C5 59.3 (3) C4—C9—C16—C21 40.3 (3)
C29—O2—C5—C6 13.8 (3) C8—C9—C16—C17 39.7 (3)
C29—O2—C5—C4 −169.76 (19) C4—C9—C16—C17 −140.0 (2)
C9—C4—C5—O2 −179.93 (18) C21—C16—C17—C18 −2.1 (4)
C1—C4—C5—O2 −4.7 (3) C9—C16—C17—C18 178.2 (2)
C9—C4—C5—C6 −3.4 (3) C16—C17—C18—C19 0.1 (4)
C1—C4—C5—C6 171.84 (19) C17—C18—C19—C20 0.9 (4)
O2—C5—C6—C7 178.6 (2) C17—C18—C19—F2 −177.8 (2)
C4—C5—C6—C7 2.4 (3) C18—C19—C20—C21 0.2 (4)
C5—C6—C7—C8 1.3 (3) F2—C19—C20—C21 178.9 (2)
C5—C6—C7—C10 −174.82 (19) C17—C16—C21—C20 3.2 (4)
C6—C7—C8—C9 −4.1 (3) C9—C16—C21—C20 −177.2 (2)
C10—C7—C8—C9 172.08 (19) C19—C20—C21—C16 −2.3 (4)
C7—C8—C9—C4 3.1 (3) C2—C3—C22—C27 171.7 (3)
C7—C8—C9—C16 −176.63 (19) C2—C3—C22—C23 −6.8 (4)
C5—C4—C9—C8 0.7 (3) C27—C22—C23—C24 −0.5 (4)
C1—C4—C9—C8 −174.35 (19) C3—C22—C23—C24 178.1 (2)
C5—C4—C9—C16 −179.65 (19) C22—C23—C24—C25 −0.2 (4)
C1—C4—C9—C16 5.3 (3) C23—C24—C25—C26 1.0 (4)
C6—C7—C10—C15 43.8 (3) C23—C24—C25—S1 179.5 (2)
C8—C7—C10—C15 −132.3 (2) C28—S1—C25—C24 173.2 (2)
C6—C7—C10—C11 −139.4 (2) C28—S1—C25—C26 −8.4 (3)
C8—C7—C10—C11 44.6 (3) C24—C25—C26—C27 −1.1 (4)
C15—C10—C11—C12 −0.2 (3) S1—C25—C26—C27 −179.5 (2)
C7—C10—C11—C12 −177.2 (2) C23—C22—C27—C26 0.4 (4)
C10—C11—C12—C13 0.7 (3) C3—C22—C27—C26 −178.2 (3)
C11—C12—C13—C14 −0.2 (4) C25—C26—C27—C22 0.4 (5)
C11—C12—C13—F1 179.42 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O1i 0.93 2.47 3.289 (3) 147

Symmetry code: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2507).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3327–o3328. [DOI] [PMC free article] [PubMed]
  3. Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o163. [DOI] [PMC free article] [PubMed]
  4. Fun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2024. [DOI] [PMC free article] [PubMed]
  5. Gill, M. & Steglich, W. (1987). Prog. Chem. Org. Nat. Prod. 51, 1–317. [DOI] [PubMed]
  6. Liu, J. K. (2006). Chem. Rev. 106, 2209–2223. [DOI] [PubMed]
  7. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  8. Samshuddin, S., Narayana, B., Yathirajan, H. S., Betz, R., Gerber, T. & Hosten, E. (2012). Acta Cryst. E68, o1538–o1539. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812030139/gk2507sup1.cif

e-68-o2378-sup1.cif (30KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030139/gk2507Isup2.hkl

e-68-o2378-Isup2.hkl (222.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030139/gk2507Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES