Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 10;68(Pt 8):o2405–o2406. doi: 10.1107/S1600536812030504

(N′,N′′Z,N′,N′′E)-N′,N′′-[1-(4-Chloro­phen­yl)ethane-1,2-diyl­idene]bis­(3-methyl-1-benzofuran-2-carbohydrazide)

Hoong-Kun Fun a,*,, Tze Shyang Chia a, Ahmed M Alafeefy b, Hatem A Abdel-Aziz c
PMCID: PMC3414328  PMID: 22904861

Abstract

In the title compound, C28H21ClN4O4, the benzofuran ring systems make dihedral angles of 7.43 (8) and 30.92 (9)° with the chloro-substituted benzene ring. The dihedral angle between the two benzofuran ring systems is 27.41 (7)°. The two benzofuran rings are connected to the chloro-substituted benzene ring through C—N—N=C and C—N—N=C—C bridges which are nearly planar [maximum deviations = 0.003 (1) and 0.037 (1) Å]. An intra­molecular N—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯(O,N) and C—H⋯O hydrogen bonds into a tape along the c axis and these tapes are further connected by another weak C—H⋯O hydrogen bond into a sheet parallel to the bc plane. π–π inter­actions [centroid-to-centroid distances = 3.4845 (12)–3.6250 (13) Å] are also observed.

Related literature  

For the biological activity of benzofurans, see: Abdel-Aziz et al. (2009); Abdel-Aziz & Mekawey (2009); Abdel-Wahab et al. (2009); Bhovi et al. (2010). For the synthesis, see: Abdel-Aziz et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2405-scheme1.jpg

Experimental  

Crystal data  

  • C28H21ClN4O4

  • M r = 512.94

  • Monoclinic, Inline graphic

  • a = 7.5539 (9) Å

  • b = 23.332 (3) Å

  • c = 13.6027 (16) Å

  • β = 94.275 (2)°

  • V = 2390.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.30 × 0.11 × 0.09 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.942, T max = 0.983

  • 19379 measured reflections

  • 6850 independent reflections

  • 4662 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.144

  • S = 1.03

  • 6850 reflections

  • 344 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030504/is5163sup1.cif

e-68-o2405-sup1.cif (33KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030504/is5163Isup2.hkl

e-68-o2405-Isup2.hkl (335.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N3 0.89 (2) 1.96 (2) 2.644 (2) 132.3 (18)
N4—H1N4⋯O2i 0.95 (3) 2.31 (3) 3.187 (2) 154 (2)
N4—H1N4⋯N2i 0.95 (3) 2.48 (3) 3.205 (2) 134 (2)
C17—H17A⋯O2i 0.93 2.32 3.165 (2) 150
C28—H28C⋯O4ii 0.96 2.53 3.464 (2) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for funding and facilities.

supplementary crystallographic information

Comment

Benzofurans are found to be useful as anticonvulsant, anti-inflammatory, antitumor, antifungal, anthelmintic and antihyperglycemic agents (Abdel-Aziz et al., 2009; Abdel-Aziz & Mekawey, 2009; Abdel-Wahab et al., 2009; Bhovi et al., 2010). In view of the biological activities and in continuation to our interest with benzofurans, we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The O1/C1–C8 and O3/C19–C26 benzofuran ring systems (r.m.s. deviations = 0.0096 and 0.0052 Å, respectively) make dihedral angles of 7.43 (8) and 30.92 (9)°, respectively with the chloro-substituted C11–C16 benzene ring. The dihedral angle between the two benzofuran ring systems is 27.41 (7)°. The two benzofuran rings are connected to the chloro-substituted benzene ring through C9—N1—N2—C10 and C18—N4—N3—C17—C10 bridges which are nearly planar [maximum deviations = 0.003 (1) Å at atom N2 and 0.037 (1) Å at atom C17] and the ketone O2 and O4 atoms are almost coplanar with their attached bridges [N2—N1—C9—O2 = 0.1 (3)° and N3—N4—C18—O4 = 11.4 (3)°]. An intramolecular N1—H1N1···N3 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule.

In the crystal (Fig. 2), the molecules are linked by N4—H1N4···(O2,N2) and C17—H17A···O2 hydrogen bonds (Table 1) into a tape along the c axis and the tapes are further connected by weak C28—H28C···O4 hydrogen bonds into a sheet parallel to the bc plane. π–π interactions are also observed with Cg1···Cg3 = 3.4845 (12) Å [-x, 2 - y, 1 - z], Cg2···Cg4 = 3.6250 (13) Å [-1 + x, 3/2 - y, -1/2 + z] and Cg3···Cg3 = 3.6124 (13) Å [-1 - x, 2 - y, 1 - z], where Cg1, Cg2, Cg3 and Cg4 are the centroids of O1/C1/C6–C8, O3/C19–C21/C26, C1–C6 and C11–C16 rings, respectively.

Experimental

The title compound was prepared by the reaction of 3-methylbenzofuran-2-carbohydrazide with 2-chloro-1-(4-chlorophenyl)ethanone in absolute ethanol according to the reported method (Abdel-Aziz et al., 2009). Colourless blocks suitable for an X-ray structural analysis were obtained by slow evaporation from EtOH/DMF.

Refinement

Atoms H1N1 and H1N4 were located in a difference Fourier map and refined freely [N—H = 0.89 (2) and 0.95 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. An outlier, (011), was omitted in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. The dashed line represents the intramolecular N—H···N hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For sake of clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C28H21ClN4O4 F(000) = 1064
Mr = 512.94 Dx = 1.425 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4684 reflections
a = 7.5539 (9) Å θ = 2.3–29.8°
b = 23.332 (3) Å µ = 0.20 mm1
c = 13.6027 (16) Å T = 100 K
β = 94.275 (2)° Block, colourless
V = 2390.8 (5) Å3 0.30 × 0.11 × 0.09 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer 6850 independent reflections
Radiation source: fine-focus sealed tube 4662 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
φ and ω scans θmax = 29.9°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→10
Tmin = 0.942, Tmax = 0.983 k = −32→28
19379 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.8585P] where P = (Fo2 + 2Fc2)/3
6850 reflections (Δ/σ)max = 0.001
344 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.45030 (7) 0.51063 (2) 0.65612 (4) 0.02517 (13)
O1 −0.18297 (18) 0.91093 (5) 0.50974 (9) 0.0174 (3)
O2 0.0296 (2) 0.84287 (6) 0.72023 (9) 0.0260 (3)
O3 −0.26774 (18) 0.77075 (5) 0.10805 (9) 0.0182 (3)
O4 −0.1284 (2) 0.88213 (6) 0.27065 (10) 0.0275 (3)
N1 0.0177 (2) 0.81923 (6) 0.55642 (11) 0.0161 (3)
N2 0.1004 (2) 0.76847 (6) 0.57851 (11) 0.0161 (3)
N3 0.0059 (2) 0.78780 (7) 0.36930 (10) 0.0175 (3)
N4 −0.0473 (2) 0.78768 (7) 0.27125 (11) 0.0190 (3)
C1 −0.2346 (2) 0.96694 (8) 0.49610 (13) 0.0166 (4)
C2 −0.3267 (3) 0.98844 (8) 0.41213 (14) 0.0207 (4)
H2A −0.3607 0.9653 0.3583 0.025*
C3 −0.3650 (3) 1.04656 (9) 0.41339 (15) 0.0238 (4)
H3A −0.4277 1.0631 0.3591 0.029*
C4 −0.3112 (3) 1.08106 (9) 0.49488 (15) 0.0242 (4)
H4A −0.3386 1.1199 0.4930 0.029*
C5 −0.2186 (3) 1.05869 (8) 0.57782 (15) 0.0211 (4)
H5A −0.1820 1.0820 0.6310 0.025*
C6 −0.1818 (2) 0.99973 (8) 0.57888 (13) 0.0168 (4)
C7 −0.0928 (2) 0.96115 (8) 0.64901 (13) 0.0171 (4)
C8 −0.0978 (2) 0.90913 (8) 0.60363 (12) 0.0167 (4)
C9 −0.0134 (3) 0.85473 (8) 0.63364 (12) 0.0174 (4)
C10 0.1336 (2) 0.73377 (7) 0.50707 (12) 0.0154 (3)
C11 0.2211 (2) 0.67909 (8) 0.53963 (13) 0.0157 (3)
C12 0.2970 (3) 0.67412 (8) 0.63637 (13) 0.0212 (4)
H12A 0.3000 0.7059 0.6776 0.025*
C13 0.3677 (3) 0.62277 (8) 0.67172 (14) 0.0225 (4)
H13A 0.4167 0.6200 0.7363 0.027*
C14 0.3648 (3) 0.57558 (8) 0.60979 (14) 0.0195 (4)
C15 0.2966 (3) 0.57942 (8) 0.51350 (14) 0.0232 (4)
H15A 0.2980 0.5477 0.4721 0.028*
C16 0.2252 (3) 0.63126 (8) 0.47841 (14) 0.0205 (4)
H16A 0.1796 0.6340 0.4132 0.025*
C17 0.0845 (3) 0.74172 (8) 0.40184 (13) 0.0186 (4)
H17A 0.1104 0.7130 0.3576 0.022*
C18 −0.1258 (3) 0.83580 (8) 0.22966 (13) 0.0180 (4)
C19 −0.2064 (2) 0.82603 (8) 0.12888 (13) 0.0168 (4)
C20 −0.2279 (3) 0.86146 (8) 0.04978 (13) 0.0172 (4)
C21 −0.3092 (3) 0.82657 (8) −0.02879 (13) 0.0188 (4)
C22 −0.3632 (3) 0.83616 (9) −0.12821 (14) 0.0266 (4)
H22A −0.3489 0.8719 −0.1570 0.032*
C23 −0.4381 (3) 0.79104 (10) −0.18212 (15) 0.0328 (5)
H23A −0.4758 0.7966 −0.2481 0.039*
C24 −0.4586 (3) 0.73683 (10) −0.13934 (16) 0.0324 (5)
H24A −0.5101 0.7074 −0.1777 0.039*
C25 −0.4041 (3) 0.72607 (9) −0.04164 (15) 0.0257 (4)
H25A −0.4157 0.6901 −0.0132 0.031*
C26 −0.3311 (2) 0.77218 (8) 0.01104 (13) 0.0189 (4)
C27 −0.1779 (3) 0.92302 (8) 0.04235 (15) 0.0252 (4)
H27A −0.1037 0.9338 0.0997 0.038*
H27B −0.2833 0.9462 0.0380 0.038*
H27C −0.1146 0.9287 −0.0155 0.038*
C28 −0.0066 (3) 0.97664 (8) 0.74798 (14) 0.0230 (4)
H28A 0.0764 0.9473 0.7696 0.034*
H28B −0.0956 0.9802 0.7944 0.034*
H28C 0.0549 1.0124 0.7435 0.034*
H1N1 −0.013 (3) 0.8287 (9) 0.4940 (17) 0.023 (6)*
H1N4 −0.033 (3) 0.7535 (12) 0.2352 (19) 0.043 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0302 (3) 0.0151 (2) 0.0296 (2) 0.00422 (19) −0.00130 (19) 0.00252 (17)
O1 0.0233 (7) 0.0133 (6) 0.0152 (6) −0.0004 (5) −0.0006 (5) −0.0009 (5)
O2 0.0435 (9) 0.0199 (7) 0.0143 (6) 0.0074 (6) 0.0013 (6) 0.0017 (5)
O3 0.0223 (7) 0.0133 (6) 0.0182 (6) −0.0003 (5) −0.0025 (5) −0.0016 (5)
O4 0.0436 (9) 0.0151 (7) 0.0226 (7) 0.0026 (6) −0.0047 (6) −0.0031 (5)
N1 0.0245 (8) 0.0101 (7) 0.0135 (7) 0.0008 (6) −0.0003 (6) −0.0001 (5)
N2 0.0192 (8) 0.0098 (7) 0.0191 (7) 0.0006 (6) 0.0004 (6) 0.0005 (5)
N3 0.0210 (8) 0.0174 (8) 0.0138 (7) −0.0005 (6) −0.0016 (6) −0.0002 (5)
N4 0.0260 (9) 0.0158 (8) 0.0145 (7) 0.0032 (6) −0.0027 (6) −0.0025 (6)
C1 0.0168 (9) 0.0122 (8) 0.0209 (8) −0.0009 (7) 0.0028 (7) 0.0002 (6)
C2 0.0196 (9) 0.0201 (10) 0.0222 (9) −0.0016 (7) 0.0005 (7) 0.0025 (7)
C3 0.0198 (10) 0.0225 (10) 0.0289 (10) 0.0013 (8) 0.0005 (8) 0.0067 (8)
C4 0.0219 (10) 0.0138 (9) 0.0375 (11) 0.0032 (7) 0.0059 (8) 0.0039 (8)
C5 0.0197 (9) 0.0147 (9) 0.0293 (10) −0.0006 (7) 0.0040 (8) −0.0036 (7)
C6 0.0162 (9) 0.0149 (9) 0.0196 (8) 0.0002 (7) 0.0034 (7) −0.0011 (6)
C7 0.0188 (9) 0.0143 (9) 0.0182 (8) −0.0005 (7) 0.0022 (7) −0.0011 (6)
C8 0.0207 (9) 0.0150 (9) 0.0143 (7) −0.0012 (7) 0.0002 (7) −0.0007 (6)
C9 0.0227 (10) 0.0133 (9) 0.0165 (8) −0.0010 (7) 0.0029 (7) −0.0017 (6)
C10 0.0161 (9) 0.0128 (8) 0.0169 (8) −0.0015 (6) −0.0006 (6) −0.0005 (6)
C11 0.0147 (9) 0.0135 (8) 0.0188 (8) −0.0010 (7) 0.0011 (6) −0.0010 (6)
C12 0.0251 (10) 0.0177 (9) 0.0201 (8) 0.0024 (8) −0.0033 (7) −0.0046 (7)
C13 0.0264 (11) 0.0205 (10) 0.0197 (9) 0.0041 (8) −0.0031 (7) −0.0011 (7)
C14 0.0195 (9) 0.0132 (9) 0.0258 (9) 0.0008 (7) 0.0021 (7) 0.0018 (7)
C15 0.0301 (11) 0.0136 (9) 0.0257 (9) 0.0020 (8) −0.0002 (8) −0.0047 (7)
C16 0.0259 (10) 0.0164 (9) 0.0187 (8) 0.0005 (7) −0.0022 (7) −0.0019 (7)
C17 0.0231 (10) 0.0156 (9) 0.0168 (8) 0.0009 (7) −0.0003 (7) −0.0026 (6)
C18 0.0218 (9) 0.0151 (9) 0.0171 (8) −0.0010 (7) 0.0014 (7) −0.0016 (6)
C19 0.0199 (9) 0.0118 (8) 0.0183 (8) −0.0003 (7) −0.0005 (7) −0.0029 (6)
C20 0.0190 (9) 0.0141 (9) 0.0184 (8) 0.0020 (7) 0.0007 (7) −0.0009 (6)
C21 0.0198 (9) 0.0192 (10) 0.0172 (8) 0.0038 (7) 0.0005 (7) −0.0011 (7)
C22 0.0363 (12) 0.0248 (11) 0.0181 (9) 0.0076 (9) −0.0025 (8) −0.0002 (7)
C23 0.0401 (13) 0.0350 (13) 0.0217 (9) 0.0093 (10) −0.0093 (9) −0.0075 (8)
C24 0.0343 (13) 0.0308 (12) 0.0300 (11) 0.0039 (9) −0.0110 (9) −0.0124 (9)
C25 0.0247 (10) 0.0205 (10) 0.0308 (10) 0.0002 (8) −0.0049 (8) −0.0062 (8)
C26 0.0171 (9) 0.0202 (9) 0.0187 (8) 0.0022 (7) −0.0017 (7) −0.0027 (7)
C27 0.0329 (12) 0.0168 (10) 0.0259 (9) −0.0006 (8) 0.0031 (8) 0.0012 (7)
C28 0.0298 (11) 0.0191 (10) 0.0196 (8) 0.0000 (8) −0.0007 (8) −0.0060 (7)

Geometric parameters (Å, º)

Cl1—C14 1.7465 (19) C11—C16 1.394 (2)
O1—C1 1.372 (2) C11—C12 1.400 (2)
O1—C8 1.387 (2) C12—C13 1.383 (3)
O2—C9 1.230 (2) C12—H12A 0.9300
O3—C26 1.370 (2) C13—C14 1.386 (3)
O3—C19 1.392 (2) C13—H13A 0.9300
O4—C18 1.217 (2) C14—C15 1.374 (3)
N1—N2 1.362 (2) C15—C16 1.394 (3)
N1—C9 1.372 (2) C15—H15A 0.9300
N1—H1N1 0.89 (2) C16—H16A 0.9300
N2—C10 1.304 (2) C17—H17A 0.9300
N3—C17 1.291 (2) C18—C19 1.476 (2)
N3—N4 1.364 (2) C19—C20 1.357 (2)
N4—C18 1.372 (2) C20—C21 1.444 (3)
N4—H1N4 0.95 (3) C20—C27 1.491 (3)
C1—C2 1.386 (3) C21—C26 1.395 (3)
C1—C6 1.395 (2) C21—C22 1.401 (3)
C2—C3 1.387 (3) C22—C23 1.380 (3)
C2—H2A 0.9300 C22—H22A 0.9300
C3—C4 1.405 (3) C23—C24 1.406 (3)
C3—H3A 0.9300 C23—H23A 0.9300
C4—C5 1.385 (3) C24—C25 1.385 (3)
C4—H4A 0.9300 C24—H24A 0.9300
C5—C6 1.403 (3) C25—C26 1.384 (3)
C5—H5A 0.9300 C25—H25A 0.9300
C6—C7 1.441 (2) C27—H27A 0.9600
C7—C8 1.361 (2) C27—H27B 0.9600
C7—C28 1.496 (2) C27—H27C 0.9600
C8—C9 1.465 (3) C28—H28A 0.9600
C10—C17 1.463 (2) C28—H28B 0.9600
C10—C11 1.489 (2) C28—H28C 0.9600
C1—O1—C8 105.12 (13) C15—C14—Cl1 120.19 (15)
C26—O3—C19 105.10 (14) C13—C14—Cl1 118.78 (14)
N2—N1—C9 117.26 (14) C14—C15—C16 119.41 (17)
N2—N1—H1N1 120.4 (14) C14—C15—H15A 120.3
C9—N1—H1N1 122.3 (14) C16—C15—H15A 120.3
C10—N2—N1 119.09 (15) C15—C16—C11 121.00 (17)
C17—N3—N4 115.35 (15) C15—C16—H16A 119.5
N3—N4—C18 119.22 (15) C11—C16—H16A 119.5
N3—N4—H1N4 118.1 (16) N3—C17—C10 121.18 (16)
C18—N4—H1N4 122.6 (16) N3—C17—H17A 119.4
O1—C1—C2 125.17 (16) C10—C17—H17A 119.4
O1—C1—C6 110.60 (15) O4—C18—N4 124.01 (16)
C2—C1—C6 124.24 (17) O4—C18—C19 122.89 (17)
C1—C2—C3 115.84 (18) N4—C18—C19 113.10 (15)
C1—C2—H2A 122.1 C20—C19—O3 112.62 (15)
C3—C2—H2A 122.1 C20—C19—C18 131.24 (17)
C2—C3—C4 121.44 (18) O3—C19—C18 116.11 (15)
C2—C3—H3A 119.3 C19—C20—C21 105.23 (16)
C4—C3—H3A 119.3 C19—C20—C27 128.68 (17)
C5—C4—C3 121.71 (18) C21—C20—C27 126.09 (16)
C5—C4—H4A 119.1 C26—C21—C22 119.06 (18)
C3—C4—H4A 119.1 C26—C21—C20 106.37 (15)
C4—C5—C6 117.75 (18) C22—C21—C20 134.56 (19)
C4—C5—H5A 121.1 C23—C22—C21 118.0 (2)
C6—C5—H5A 121.1 C23—C22—H22A 121.0
C1—C6—C5 119.00 (17) C21—C22—H22A 121.0
C1—C6—C7 106.45 (16) C22—C23—C24 121.32 (19)
C5—C6—C7 134.54 (17) C22—C23—H23A 119.3
C8—C7—C6 105.12 (15) C24—C23—H23A 119.3
C8—C7—C28 128.27 (17) C25—C24—C23 121.77 (19)
C6—C7—C28 126.54 (16) C25—C24—H24A 119.1
C7—C8—O1 112.71 (16) C23—C24—H24A 119.1
C7—C8—C9 130.51 (16) C26—C25—C24 115.7 (2)
O1—C8—C9 116.43 (15) C26—C25—H25A 122.1
O2—C9—N1 123.33 (17) C24—C25—H25A 122.1
O2—C9—C8 122.71 (16) O3—C26—C25 125.22 (18)
N1—C9—C8 113.93 (15) O3—C26—C21 110.68 (16)
N2—C10—C17 126.98 (16) C25—C26—C21 124.09 (17)
N2—C10—C11 114.60 (15) C20—C27—H27A 109.5
C17—C10—C11 118.30 (15) C20—C27—H27B 109.5
C16—C11—C12 117.99 (17) H27A—C27—H27B 109.5
C16—C11—C10 122.49 (16) C20—C27—H27C 109.5
C12—C11—C10 119.47 (16) H27A—C27—H27C 109.5
C13—C12—C11 121.25 (17) H27B—C27—H27C 109.5
C13—C12—H12A 119.4 C7—C28—H28A 109.5
C11—C12—H12A 119.4 C7—C28—H28B 109.5
C12—C13—C14 119.25 (17) H28A—C28—H28B 109.5
C12—C13—H13A 120.4 C7—C28—H28C 109.5
C14—C13—H13A 120.4 H28A—C28—H28C 109.5
C15—C14—C13 121.03 (17) H28B—C28—H28C 109.5
C9—N1—N2—C10 −179.44 (17) C12—C13—C14—C15 1.5 (3)
C17—N3—N4—C18 −177.48 (17) C12—C13—C14—Cl1 −178.68 (16)
C8—O1—C1—C2 −179.32 (19) C13—C14—C15—C16 −1.7 (3)
C8—O1—C1—C6 0.6 (2) Cl1—C14—C15—C16 178.55 (16)
O1—C1—C2—C3 −179.65 (18) C14—C15—C16—C11 −0.3 (3)
C6—C1—C2—C3 0.5 (3) C12—C11—C16—C15 2.4 (3)
C1—C2—C3—C4 0.6 (3) C10—C11—C16—C15 −175.19 (18)
C2—C3—C4—C5 −0.4 (3) N4—N3—C17—C10 −174.21 (16)
C3—C4—C5—C6 −0.9 (3) N2—C10—C17—N3 3.1 (3)
O1—C1—C6—C5 178.29 (16) C11—C10—C17—N3 178.91 (17)
C2—C1—C6—C5 −1.8 (3) N3—N4—C18—O4 11.4 (3)
O1—C1—C6—C7 −0.6 (2) N3—N4—C18—C19 −169.09 (16)
C2—C1—C6—C7 179.31 (18) C26—O3—C19—C20 −0.2 (2)
C4—C5—C6—C1 2.0 (3) C26—O3—C19—C18 −178.47 (16)
C4—C5—C6—C7 −179.5 (2) O4—C18—C19—C20 31.0 (3)
C1—C6—C7—C8 0.4 (2) N4—C18—C19—C20 −148.4 (2)
C5—C6—C7—C8 −178.3 (2) O4—C18—C19—O3 −151.14 (19)
C1—C6—C7—C28 177.63 (19) N4—C18—C19—O3 29.4 (2)
C5—C6—C7—C28 −1.0 (4) O3—C19—C20—C21 −0.1 (2)
C6—C7—C8—O1 0.0 (2) C18—C19—C20—C21 177.8 (2)
C28—C7—C8—O1 −177.21 (18) O3—C19—C20—C27 −179.37 (18)
C6—C7—C8—C9 172.82 (19) C18—C19—C20—C27 −1.5 (4)
C28—C7—C8—C9 −4.4 (4) C19—C20—C21—C26 0.4 (2)
C1—O1—C8—C7 −0.4 (2) C27—C20—C21—C26 179.71 (19)
C1—O1—C8—C9 −174.26 (16) C19—C20—C21—C22 −178.8 (2)
N2—N1—C9—O2 0.1 (3) C27—C20—C21—C22 0.5 (4)
N2—N1—C9—C8 178.22 (15) C26—C21—C22—C23 0.8 (3)
C7—C8—C9—O2 24.7 (3) C20—C21—C22—C23 180.0 (2)
O1—C8—C9—O2 −162.71 (18) C21—C22—C23—C24 −0.6 (3)
C7—C8—C9—N1 −153.5 (2) C22—C23—C24—C25 −0.3 (4)
O1—C8—C9—N1 19.1 (2) C23—C24—C25—C26 0.9 (3)
N1—N2—C10—C17 −2.9 (3) C19—O3—C26—C25 179.39 (19)
N1—N2—C10—C11 −178.84 (15) C19—O3—C26—C21 0.5 (2)
N2—C10—C11—C16 162.87 (18) C24—C25—C26—O3 −179.46 (19)
C17—C10—C11—C16 −13.4 (3) C24—C25—C26—C21 −0.8 (3)
N2—C10—C11—C12 −14.7 (3) C22—C21—C26—O3 178.77 (17)
C17—C10—C11—C12 169.01 (17) C20—C21—C26—O3 −0.6 (2)
C16—C11—C12—C13 −2.5 (3) C22—C21—C26—C25 −0.1 (3)
C10—C11—C12—C13 175.12 (18) C20—C21—C26—C25 −179.49 (19)
C11—C12—C13—C14 0.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···N3 0.89 (2) 1.96 (2) 2.644 (2) 132.3 (18)
N4—H1N4···O2i 0.95 (3) 2.31 (3) 3.187 (2) 154 (2)
N4—H1N4···N2i 0.95 (3) 2.48 (3) 3.205 (2) 134 (2)
C17—H17A···O2i 0.93 2.32 3.165 (2) 150
C28—H28C···O4ii 0.96 2.53 3.464 (2) 164

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5163).

References

  1. Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 4985–4997. [DOI] [PubMed]
  2. Abdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637–3644. [DOI] [PubMed]
  3. Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bhovi, V. K., Bodke, Y. D., Biradar, S., Swamy, B. E. K. & Umesh, S. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 110–116.
  6. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030504/is5163sup1.cif

e-68-o2405-sup1.cif (33KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030504/is5163Isup2.hkl

e-68-o2405-Isup2.hkl (335.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES