Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 10;68(Pt 8):o2418. doi: 10.1107/S1600536812030619

N′-(2,4-Dinitro­phen­yl)benzohydrazide

Aamer Saeed a,*, Ifzan Arshad a, Ulrich Flörke b
PMCID: PMC3414336  PMID: 22904869

Abstract

In the title compound, C13H10N4O5, the aromatic ring planes are close to perpendicular [dihedral angle = 75.94 (5)°] and the C—N—N—C torsion angle is 88.7 (2)°. Both nitro groups lie close to their attached ring plane, with C—C—N—O torsion angles of 3.1 (2) and 5.3 (2)°. This allows for the formation of an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains extending along [100].

Related literature  

For a related structure, see: Wardell et al. (2007).graphic file with name e-68-o2418-scheme1.jpg

Experimental  

Crystal data  

  • C13H10N4O5

  • M r = 302.25

  • Monoclinic, Inline graphic

  • a = 13.5714 (10) Å

  • b = 8.4621 (6) Å

  • c = 11.4547 (9) Å

  • β = 93.830 (2)°

  • V = 1312.55 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 130 K

  • 0.48 × 0.20 × 0.19 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.944, T max = 0.977

  • 6295 measured reflections

  • 1673 independent reflections

  • 1599 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.083

  • S = 1.06

  • 1673 reflections

  • 206 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030619/hb6871sup1.cif

e-68-o2418-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030619/hb6871Isup2.hkl

e-68-o2418-Isup2.hkl (82.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030619/hb6871Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.92 (3) 1.96 (3) 2.803 (2) 151 (2)
N2—H2⋯O3ii 0.81 (3) 2.30 (2) 2.968 (2) 140 (2)
N2—H2⋯O3 0.81 (3) 2.02 (2) 2.606 (2) 129 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AS gratefully acknowledges a research grant from the Higher Education Commission of Pakistan under the project No. 4-279/PAK-US/HEC 2010-917 (Pakistan–US Science and Technology Cooperation Program).

supplementary crystallographic information

Comment

The PhC(O)NNPh core moiety of the title compound (Figure 1) is similar to that of N-anilino-4-nitrobenzamide (Wardell et al., 2007) with different ring substituents. The molecular conformation is determined by an intra-molecular N2–H···O3 hydrogen bond with H···O3 2.02 (2) Å and an associated torsion angle N2–C8–C9–N3 of -0.1 (3)°. The inter-molecular hydrogen bonds N1–H···O1(-x+0.5, y+0.5, -z) with H···O 1.96 (3) Å and N-H···O 151 (2)° as well as N2–H···O3(-x, y, -z) with H···O 2.30 (2) Å and C-H···O 140 (2)° link molecules into zigzag chains extended along the a-axis (Figure 2).

Experimental

2,4-Dinitrophenyl hydrazine (2.8 mmol) in dry CH2Cl2 was treated with benzoyl chloride (2.8 mmol) and the mixture was refluxed for 3 hours. On completion of reaction, the mixture was allowed to cool and excess of solvent was evaporated under reduced pressure. Yellow prisms of the title compound were recrystallized from ethanol solution by slow evaporation of the solvent at room temperature (m.p 213-215°C).

Refinement

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) and C—H 0.95 Å. H(N) atoms were refined freely. The title compound crystallizes in the non-centrosymmetric space group C 2; however, in the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Anisotropic displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewd along a-axis with intermolecular hydrogen bonding pattern as dashed lines. H atoms not involved are omitted.

Crystal data

C13H10N4O5 F(000) = 624
Mr = 302.25 Dx = 1.530 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 13.5714 (10) Å Cell parameters from 2900 reflections
b = 8.4621 (6) Å θ = 2.8–28.1°
c = 11.4547 (9) Å µ = 0.12 mm1
β = 93.830 (2)° T = 130 K
V = 1312.55 (17) Å3 Prism, yellow
Z = 4 0.48 × 0.20 × 0.19 mm

Data collection

Bruker SMART APEX diffractometer 1673 independent reflections
Radiation source: sealed tube 1599 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
φ and ω scans θmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −17→17
Tmin = 0.944, Tmax = 0.977 k = −11→10
6295 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: difference Fourier map
wR(F2) = 0.083 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.055P)2 + 0.2958P] where P = (Fo2 + 2Fc2)/3
1673 reflections (Δ/σ)max < 0.001
206 parameters Δρmax = 0.32 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.17978 (9) 0.28363 (16) −0.09274 (11) 0.0246 (3)
O2 −0.07017 (10) 0.5010 (2) 0.29368 (13) 0.0372 (4)
O3 −0.01782 (10) 0.57932 (19) 0.12955 (11) 0.0279 (3)
O4 0.11363 (10) 0.1665 (2) 0.55486 (12) 0.0357 (4)
O5 0.25511 (12) 0.0749 (2) 0.51048 (13) 0.0336 (3)
N1 0.23735 (12) 0.5032 (2) 0.00043 (13) 0.0236 (3)
H1 0.2805 (17) 0.586 (3) 0.0130 (19) 0.027 (4)*
N2 0.15908 (12) 0.5061 (2) 0.07220 (13) 0.0236 (3)
H2 0.1069 (18) 0.542 (3) 0.0466 (19) 0.027 (4)*
N3 −0.00676 (11) 0.50411 (19) 0.22250 (13) 0.0236 (3)
N4 0.18149 (11) 0.1576 (2) 0.48955 (13) 0.0251 (3)
C1 0.24091 (12) 0.3905 (2) −0.08297 (14) 0.0205 (3)
C2 0.32573 (13) 0.4038 (2) −0.15959 (15) 0.0211 (3)
C3 0.32016 (14) 0.3169 (2) −0.26364 (15) 0.0245 (4)
H3A 0.2639 0.2531 −0.2835 0.029*
C4 0.39670 (14) 0.3239 (3) −0.33789 (16) 0.0270 (4)
H4A 0.3925 0.2654 −0.4088 0.032*
C5 0.47950 (14) 0.4162 (2) −0.30909 (17) 0.0278 (4)
H5A 0.5319 0.4204 −0.3601 0.033*
C6 0.48556 (14) 0.5025 (3) −0.20550 (17) 0.0278 (4)
H6A 0.5422 0.5655 −0.1858 0.033*
C7 0.40929 (13) 0.4967 (2) −0.13092 (15) 0.0245 (4)
H7A 0.4137 0.5558 −0.0603 0.029*
C8 0.16356 (12) 0.4225 (2) 0.17329 (14) 0.0193 (3)
C9 0.08447 (12) 0.4188 (2) 0.24836 (15) 0.0196 (3)
C10 0.09033 (13) 0.3322 (2) 0.35177 (15) 0.0208 (3)
H10A 0.0366 0.3305 0.4008 0.025*
C11 0.17514 (12) 0.2492 (2) 0.38177 (15) 0.0210 (3)
C12 0.25477 (13) 0.2501 (2) 0.31123 (15) 0.0221 (4)
H12A 0.3128 0.1915 0.3334 0.027*
C13 0.24890 (12) 0.3360 (2) 0.20964 (15) 0.0222 (4)
H13A 0.3038 0.3373 0.1624 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0219 (6) 0.0214 (6) 0.0306 (6) −0.0018 (5) 0.0028 (5) 0.0007 (5)
O2 0.0236 (7) 0.0448 (9) 0.0449 (8) 0.0141 (7) 0.0145 (6) 0.0069 (7)
O3 0.0240 (6) 0.0297 (7) 0.0294 (6) 0.0053 (6) −0.0025 (5) −0.0004 (6)
O4 0.0279 (7) 0.0482 (10) 0.0319 (7) 0.0008 (7) 0.0084 (5) 0.0095 (7)
O5 0.0320 (7) 0.0326 (8) 0.0354 (7) 0.0077 (7) −0.0031 (5) 0.0069 (6)
N1 0.0225 (7) 0.0249 (8) 0.0243 (6) −0.0025 (7) 0.0078 (6) −0.0003 (6)
N2 0.0185 (7) 0.0284 (8) 0.0244 (7) 0.0034 (7) 0.0054 (6) 0.0001 (7)
N3 0.0183 (7) 0.0231 (8) 0.0296 (7) 0.0032 (6) 0.0020 (5) −0.0042 (6)
N4 0.0237 (7) 0.0252 (8) 0.0261 (7) −0.0012 (6) −0.0006 (6) 0.0015 (7)
C1 0.0187 (8) 0.0204 (8) 0.0223 (7) 0.0026 (7) 0.0001 (6) 0.0051 (6)
C2 0.0199 (8) 0.0206 (8) 0.0227 (8) 0.0022 (7) 0.0016 (6) 0.0039 (7)
C3 0.0247 (9) 0.0234 (9) 0.0255 (8) −0.0012 (7) 0.0013 (6) 0.0005 (7)
C4 0.0293 (9) 0.0271 (9) 0.0248 (8) 0.0039 (8) 0.0040 (7) 0.0024 (7)
C5 0.0246 (9) 0.0285 (10) 0.0311 (9) 0.0041 (8) 0.0079 (7) 0.0077 (8)
C6 0.0211 (8) 0.0269 (10) 0.0353 (9) −0.0004 (8) 0.0013 (7) 0.0052 (8)
C7 0.0231 (8) 0.0241 (9) 0.0261 (8) 0.0000 (8) −0.0002 (6) 0.0003 (7)
C8 0.0174 (8) 0.0180 (8) 0.0228 (8) 0.0000 (7) 0.0033 (6) −0.0036 (7)
C9 0.0145 (7) 0.0192 (8) 0.0252 (8) 0.0017 (6) 0.0021 (6) −0.0042 (7)
C10 0.0162 (7) 0.0217 (8) 0.0250 (8) −0.0005 (7) 0.0047 (6) −0.0040 (7)
C11 0.0209 (8) 0.0189 (8) 0.0230 (7) −0.0009 (7) 0.0011 (6) −0.0024 (6)
C12 0.0176 (8) 0.0212 (9) 0.0273 (8) 0.0022 (7) 0.0005 (6) −0.0036 (7)
C13 0.0161 (7) 0.0239 (9) 0.0269 (8) 0.0006 (7) 0.0049 (6) −0.0057 (7)

Geometric parameters (Å, º)

O1—C1 1.227 (2) C4—C5 1.390 (3)
O2—N3 1.2247 (19) C4—H4A 0.9500
O3—N3 1.241 (2) C5—C6 1.391 (3)
O4—N4 1.2271 (19) C5—H5A 0.9500
O5—N4 1.230 (2) C6—C7 1.386 (2)
N1—C1 1.353 (2) C6—H6A 0.9500
N1—N2 1.386 (2) C7—H7A 0.9500
N1—H1 0.92 (3) C8—C13 1.409 (2)
N2—C8 1.355 (2) C8—C9 1.420 (2)
N2—H2 0.81 (3) C9—C10 1.391 (2)
N3—C9 1.447 (2) C10—C11 1.372 (2)
N4—C11 1.455 (2) C10—H10A 0.9500
C1—C2 1.498 (2) C11—C12 1.392 (2)
C2—C3 1.398 (2) C12—C13 1.370 (3)
C2—C7 1.401 (3) C12—H12A 0.9500
C3—C4 1.387 (2) C13—H13A 0.9500
C3—H3A 0.9500
C1—N1—N2 119.72 (16) C6—C5—H5A 120.1
C1—N1—H1 126.7 (14) C7—C6—C5 120.21 (17)
N2—N1—H1 113.5 (14) C7—C6—H6A 119.9
C8—N2—N1 120.36 (15) C5—C6—H6A 119.9
C8—N2—H2 119.7 (16) C6—C7—C2 120.09 (17)
N1—N2—H2 118.6 (15) C6—C7—H7A 120.0
O2—N3—O3 122.17 (14) C2—C7—H7A 120.0
O2—N3—C9 118.85 (15) N2—C8—C13 120.84 (15)
O3—N3—C9 118.98 (13) N2—C8—C9 122.46 (15)
O4—N4—O5 123.30 (16) C13—C8—C9 116.69 (15)
O4—N4—C11 118.70 (15) C10—C9—C8 121.68 (15)
O5—N4—C11 118.00 (15) C10—C9—N3 115.90 (14)
O1—C1—N1 121.88 (15) C8—C9—N3 122.42 (15)
O1—C1—C2 122.90 (16) C11—C10—C9 118.82 (15)
N1—C1—C2 115.21 (15) C11—C10—H10A 120.6
C3—C2—C7 119.45 (16) C9—C10—H10A 120.6
C3—C2—C1 117.41 (15) C10—C11—C12 121.51 (16)
C7—C2—C1 123.14 (15) C10—C11—N4 119.08 (15)
C4—C3—C2 120.02 (17) C12—C11—N4 119.41 (15)
C4—C3—H3A 120.0 C13—C12—C11 119.51 (16)
C2—C3—H3A 120.0 C13—C12—H12A 120.2
C3—C4—C5 120.34 (18) C11—C12—H12A 120.2
C3—C4—H4A 119.8 C12—C13—C8 121.78 (15)
C5—C4—H4A 119.8 C12—C13—H13A 119.1
C4—C5—C6 119.88 (17) C8—C13—H13A 119.1
C4—C5—H5A 120.1
C1—N1—N2—C8 88.7 (2) N2—C8—C9—N3 −0.1 (3)
N2—N1—C1—O1 −4.6 (3) C13—C8—C9—N3 179.06 (16)
N2—N1—C1—C2 176.85 (15) O2—N3—C9—C10 3.1 (2)
O1—C1—C2—C3 17.0 (3) O3—N3—C9—C10 −177.61 (16)
N1—C1—C2—C3 −164.49 (16) O2—N3—C9—C8 −176.91 (17)
O1—C1—C2—C7 −162.30 (17) O3—N3—C9—C8 2.4 (2)
N1—C1—C2—C7 16.2 (2) C8—C9—C10—C11 0.3 (3)
C7—C2—C3—C4 −0.4 (3) N3—C9—C10—C11 −179.65 (16)
C1—C2—C3—C4 −179.70 (16) C9—C10—C11—C12 0.0 (3)
C2—C3—C4—C5 0.4 (3) C9—C10—C11—N4 −179.65 (16)
C3—C4—C5—C6 −0.2 (3) O4—N4—C11—C10 −5.3 (2)
C4—C5—C6—C7 0.0 (3) O5—N4—C11—C10 174.74 (18)
C5—C6—C7—C2 0.1 (3) O4—N4—C11—C12 175.03 (17)
C3—C2—C7—C6 0.1 (3) O5—N4—C11—C12 −4.9 (2)
C1—C2—C7—C6 179.42 (17) C10—C11—C12—C13 0.2 (3)
N1—N2—C8—C13 2.4 (3) N4—C11—C12—C13 179.91 (16)
N1—N2—C8—C9 −178.54 (15) C11—C12—C13—C8 −0.9 (3)
N2—C8—C9—C10 179.94 (17) N2—C8—C13—C12 −179.65 (17)
C13—C8—C9—C10 −0.9 (2) C9—C8—C13—C12 1.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.92 (3) 1.96 (3) 2.803 (2) 151 (2)
N2—H2···O3ii 0.81 (3) 2.30 (2) 2.968 (2) 140 (2)
N2—H2···O3 0.81 (3) 2.02 (2) 2.606 (2) 129 (2)

Symmetry codes: (i) −x+1/2, y+1/2, −z; (ii) −x, y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6871).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o334–o336. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030619/hb6871sup1.cif

e-68-o2418-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030619/hb6871Isup2.hkl

e-68-o2418-Isup2.hkl (82.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030619/hb6871Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES