Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 10;68(Pt 8):o2424. doi: 10.1107/S1600536812030838

2-Chloro-1-(4-hy­droxy­phen­yl)ethanone

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Divya N Shetty b, B Narayana b, B K Sarojini c
PMCID: PMC3414342  PMID: 22904875

Abstract

The asymmetric unit of the title compound, C8H7ClO2, consists of two independent mol­ecules, with comparable geometries. Both mol­ecules are approximately planar (r.m.s. deviations = 0.040 and 0.064 Å for the 11 non-H atoms). In the crystal, mol­ecules are linked via inter­molecular O—H⋯O and C—H⋯O hydrogen bonds into chains two mol­ecules thick along (-101).

Related literature  

For general background to and related structures of the title compound, see: Erian et al. (2003); Qing & Zhang (2009); Fun et al. (2012). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2424-scheme1.jpg

Experimental  

Crystal data  

  • C8H7ClO2

  • M r = 170.59

  • Monoclinic, Inline graphic

  • a = 7.4931 (5) Å

  • b = 14.7345 (10) Å

  • c = 13.5681 (10) Å

  • β = 95.560 (1)°

  • V = 1490.97 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 100 K

  • 0.51 × 0.23 × 0.18 mm

Data collection  

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.803, T max = 0.925

  • 16799 measured reflections

  • 4352 independent reflections

  • 4037 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.073

  • S = 1.03

  • 4352 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030838/sj5254sup1.cif

e-68-o2424-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030838/sj5254Isup2.hkl

e-68-o2424-Isup2.hkl (213.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030838/sj5254Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H2O1⋯O2A i 0.812 (16) 1.973 (16) 2.7742 (11) 168.7 (16)
O1A—H1O1⋯O2B ii 0.840 (16) 1.891 (16) 2.7229 (10) 170.4 (16)
C4A—H4AA⋯O2B ii 0.95 2.47 3.1780 (12) 131
C8A—H8AA⋯O1A iii 0.99 2.58 3.5228 (12) 160
C2B—H2BA⋯O2A i 0.95 2.44 3.1603 (12) 133
C4B—H4BA⋯O1A iv 0.95 2.58 3.5126 (12) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors would like to thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. BN thanks the UGC SAP for financial assistance for the purchase of chemicals. DNS thanks Mangalore University for chemicals and facilities for synthesizing the title compound.

supplementary crystallographic information

Comment

In view of the importance of α-haloketones in heterocyclic synthesis and their reactivity towards oxygen nucleophiles (Erian et al., 2003), the crystal structure of title compond (I) is reported. The crystal structure of the bromo analogue of the title compound has also been reported (Qing & Zhang, 2009).

The asymmetric unit (Fig. 1) of the title compound consists of two independent molecules (A and B), with comparable geometries. Both molecules (A and B) are approximately planar (r.m.s. deviation = 0.040 and 0.064 Å, respectively, for the eleven non-H atoms). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with a related structure (Fun et al., 2012).

In the crystal structure, Fig. 2, molecules are linked via intermolecular O1B–H1O2···O2A, O1A–H1O1···O2B, C4A–H4AA···O2B, C8A–H8AA···O1A, C2B–H2BA···O2A and C4B–H4BA···O1A hydrogen bonds (Table 1) into two-molecular-thick chains along the [-101].

Experimental

The title compound, 2-chloro-1-(4-hydroxyphenyl)ethanone, was purchased from Sigma-Aldrich and recrystallized from methanol by the slow evaporation method (m.p. 422 K).

Refinement

O-bound hydrogen atoms were located in a difference Fourier map and refined freely with O–H = 0.814 (17) - 0.840 (17) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.99 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Fig. 1. The asymmetric unit of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C8H7ClO2 F(000) = 704
Mr = 170.59 Dx = 1.520 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9970 reflections
a = 7.4931 (5) Å θ = 2.7–30.1°
b = 14.7345 (10) Å µ = 0.45 mm1
c = 13.5681 (10) Å T = 100 K
β = 95.560 (1)° Block, colourless
V = 1490.97 (18) Å3 0.51 × 0.23 × 0.18 mm
Z = 8

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 4352 independent reflections
Radiation source: fine-focus sealed tube 4037 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 30.1°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→10
Tmin = 0.803, Tmax = 0.925 k = −20→20
16799 measured reflections l = −19→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.037P)2 + 0.5857P] where P = (Fo2 + 2Fc2)/3
4352 reflections (Δ/σ)max = 0.003
207 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 1.09654 (3) 1.232822 (15) 0.175736 (18) 0.02002 (7)
O1A 0.51043 (9) 0.80027 (5) −0.05945 (5) 0.01637 (13)
O2A 1.01029 (10) 1.04907 (5) 0.22919 (5) 0.01973 (14)
C1A 0.79616 (12) 0.91436 (6) 0.13312 (7) 0.01573 (17)
H1AA 0.8461 0.9029 0.1990 0.019*
C2A 0.69221 (12) 0.84846 (6) 0.08224 (7) 0.01577 (17)
H2AA 0.6716 0.7920 0.1130 0.019*
C3A 0.61778 (12) 0.86551 (6) −0.01468 (7) 0.01370 (16)
C4A 0.65279 (12) 0.94739 (6) −0.06163 (7) 0.01386 (16)
H4AA 0.6060 0.9580 −0.1282 0.017*
C5A 0.75661 (12) 1.01286 (6) −0.00971 (7) 0.01353 (16)
H5AA 0.7794 1.0687 −0.0411 0.016*
C6A 0.82845 (11) 0.99793 (6) 0.08835 (7) 0.01357 (16)
C7A 0.93813 (12) 1.06615 (6) 0.14663 (7) 0.01399 (16)
C8A 0.95428 (12) 1.15941 (6) 0.10015 (7) 0.01518 (16)
H8AA 0.8336 1.1870 0.0887 0.018*
H8AB 1.0022 1.1526 0.0351 0.018*
Cl1B 0.32249 (4) 0.674926 (16) 0.744284 (18) 0.02232 (7)
O1B 0.21395 (11) 1.12541 (5) 0.38976 (6) 0.02120 (15)
O2B 0.39854 (10) 0.86748 (5) 0.75803 (5) 0.02074 (15)
C1B 0.20436 (12) 0.90119 (6) 0.50470 (7) 0.01514 (16)
H1BA 0.1632 0.8413 0.4897 0.018*
C2B 0.17605 (12) 0.96844 (6) 0.43372 (7) 0.01547 (17)
H2BA 0.1156 0.9550 0.3706 0.019*
C3B 0.23734 (12) 1.05637 (6) 0.45581 (7) 0.01522 (17)
C4B 0.32607 (13) 1.07671 (6) 0.54895 (7) 0.01661 (17)
H4BA 0.3674 1.1366 0.5636 0.020*
C5B 0.35289 (12) 1.00894 (6) 0.61929 (7) 0.01579 (17)
H5BA 0.4126 1.0227 0.6825 0.019*
C6B 0.29280 (12) 0.91996 (6) 0.59837 (7) 0.01388 (16)
C7B 0.32576 (12) 0.85017 (6) 0.67533 (7) 0.01461 (16)
C8B 0.26334 (13) 0.75424 (6) 0.64795 (7) 0.01729 (17)
H8BA 0.3173 0.7350 0.5876 0.021*
H8BB 0.1314 0.7543 0.6327 0.021*
H2O1 0.162 (2) 1.1077 (11) 0.3380 (12) 0.034 (4)*
H1O1 0.480 (2) 0.8153 (11) −0.1184 (12) 0.032 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.02376 (12) 0.01545 (11) 0.02045 (12) −0.00383 (8) 0.00009 (8) −0.00221 (8)
O1A 0.0183 (3) 0.0151 (3) 0.0150 (3) −0.0022 (2) −0.0020 (2) −0.0001 (2)
O2A 0.0253 (3) 0.0182 (3) 0.0145 (3) −0.0026 (3) −0.0043 (3) 0.0019 (3)
C1A 0.0188 (4) 0.0149 (4) 0.0130 (4) 0.0001 (3) −0.0006 (3) 0.0023 (3)
C2A 0.0190 (4) 0.0141 (4) 0.0140 (4) −0.0002 (3) 0.0003 (3) 0.0025 (3)
C3A 0.0130 (3) 0.0136 (4) 0.0143 (4) 0.0010 (3) 0.0008 (3) −0.0012 (3)
C4A 0.0146 (4) 0.0147 (4) 0.0120 (4) 0.0017 (3) −0.0001 (3) 0.0009 (3)
C5A 0.0148 (4) 0.0126 (4) 0.0131 (4) 0.0011 (3) 0.0010 (3) 0.0013 (3)
C6A 0.0150 (4) 0.0129 (4) 0.0127 (4) 0.0007 (3) 0.0008 (3) 0.0005 (3)
C7A 0.0152 (4) 0.0139 (4) 0.0129 (4) 0.0010 (3) 0.0014 (3) 0.0002 (3)
C8A 0.0167 (4) 0.0136 (4) 0.0149 (4) −0.0005 (3) −0.0005 (3) 0.0007 (3)
Cl1B 0.03273 (13) 0.01561 (11) 0.01846 (12) 0.00168 (8) 0.00162 (9) 0.00428 (8)
O1B 0.0316 (4) 0.0143 (3) 0.0161 (3) −0.0032 (3) −0.0060 (3) 0.0030 (3)
O2B 0.0284 (4) 0.0187 (3) 0.0139 (3) −0.0009 (3) −0.0047 (3) 0.0002 (3)
C1B 0.0186 (4) 0.0123 (4) 0.0141 (4) −0.0009 (3) −0.0008 (3) −0.0017 (3)
C2B 0.0189 (4) 0.0141 (4) 0.0127 (4) 0.0001 (3) −0.0021 (3) −0.0012 (3)
C3B 0.0180 (4) 0.0131 (4) 0.0142 (4) 0.0002 (3) 0.0001 (3) 0.0006 (3)
C4B 0.0203 (4) 0.0131 (4) 0.0159 (4) −0.0025 (3) −0.0009 (3) −0.0018 (3)
C5B 0.0185 (4) 0.0150 (4) 0.0132 (4) −0.0014 (3) −0.0017 (3) −0.0020 (3)
C6B 0.0160 (4) 0.0129 (4) 0.0125 (4) 0.0001 (3) 0.0002 (3) −0.0004 (3)
C7B 0.0164 (4) 0.0140 (4) 0.0133 (4) 0.0003 (3) 0.0010 (3) −0.0007 (3)
C8B 0.0240 (4) 0.0135 (4) 0.0139 (4) −0.0004 (3) −0.0003 (3) 0.0013 (3)

Geometric parameters (Å, º)

Cl1A—C8A 1.7738 (10) Cl1B—C8B 1.7772 (10)
O1A—C3A 1.3585 (11) O1B—C3B 1.3559 (11)
O1A—H1O1 0.840 (17) O1B—H2O1 0.814 (17)
O2A—C7A 1.2219 (11) O2B—C7B 1.2260 (12)
C1A—C2A 1.3863 (13) C1B—C2B 1.3838 (13)
C1A—C6A 1.4043 (12) C1B—C6B 1.4027 (13)
C1A—H1AA 0.9500 C1B—H1BA 0.9500
C2A—C3A 1.4005 (13) C2B—C3B 1.3973 (13)
C2A—H2AA 0.9500 C2B—H2BA 0.9500
C3A—C4A 1.4009 (12) C3B—C4B 1.4021 (13)
C4A—C5A 1.3879 (12) C4B—C5B 1.3824 (13)
C4A—H4AA 0.9500 C4B—H4BA 0.9500
C5A—C6A 1.4034 (12) C5B—C6B 1.4062 (12)
C5A—H5AA 0.9500 C5B—H5BA 0.9500
C6A—C7A 1.4783 (12) C6B—C7B 1.4693 (12)
C7A—C8A 1.5217 (13) C7B—C8B 1.5235 (13)
C8A—H8AA 0.9900 C8B—H8BA 0.9900
C8A—H8AB 0.9900 C8B—H8BB 0.9900
C3A—O1A—H1O1 109.5 (11) C3B—O1B—H2O1 110.5 (12)
C2A—C1A—C6A 120.72 (9) C2B—C1B—C6B 121.09 (8)
C2A—C1A—H1AA 119.6 C2B—C1B—H1BA 119.5
C6A—C1A—H1AA 119.6 C6B—C1B—H1BA 119.5
C1A—C2A—C3A 119.69 (8) C1B—C2B—C3B 119.32 (8)
C1A—C2A—H2AA 120.2 C1B—C2B—H2BA 120.3
C3A—C2A—H2AA 120.2 C3B—C2B—H2BA 120.3
O1A—C3A—C2A 117.23 (8) O1B—C3B—C2B 122.35 (8)
O1A—C3A—C4A 122.34 (8) O1B—C3B—C4B 117.07 (8)
C2A—C3A—C4A 120.43 (8) C2B—C3B—C4B 120.58 (8)
C5A—C4A—C3A 119.23 (8) C5B—C4B—C3B 119.50 (8)
C5A—C4A—H4AA 120.4 C5B—C4B—H4BA 120.3
C3A—C4A—H4AA 120.4 C3B—C4B—H4BA 120.3
C4A—C5A—C6A 121.12 (8) C4B—C5B—C6B 120.79 (9)
C4A—C5A—H5AA 119.4 C4B—C5B—H5BA 119.6
C6A—C5A—H5AA 119.4 C6B—C5B—H5BA 119.6
C5A—C6A—C1A 118.77 (8) C1B—C6B—C5B 118.72 (8)
C5A—C6A—C7A 122.87 (8) C1B—C6B—C7B 122.54 (8)
C1A—C6A—C7A 118.36 (8) C5B—C6B—C7B 118.73 (8)
O2A—C7A—C6A 121.60 (8) O2B—C7B—C6B 122.28 (8)
O2A—C7A—C8A 121.34 (8) O2B—C7B—C8B 121.00 (8)
C6A—C7A—C8A 117.05 (8) C6B—C7B—C8B 116.72 (8)
C7A—C8A—Cl1A 112.24 (7) C7B—C8B—Cl1B 112.46 (7)
C7A—C8A—H8AA 109.2 C7B—C8B—H8BA 109.1
Cl1A—C8A—H8AA 109.2 Cl1B—C8B—H8BA 109.1
C7A—C8A—H8AB 109.2 C7B—C8B—H8BB 109.1
Cl1A—C8A—H8AB 109.2 Cl1B—C8B—H8BB 109.1
H8AA—C8A—H8AB 107.9 H8BA—C8B—H8BB 107.8
C6A—C1A—C2A—C3A −0.33 (14) C6B—C1B—C2B—C3B 0.25 (14)
C1A—C2A—C3A—O1A −177.08 (8) C1B—C2B—C3B—O1B −179.94 (9)
C1A—C2A—C3A—C4A 2.21 (13) C1B—C2B—C3B—C4B −0.25 (14)
O1A—C3A—C4A—C5A 176.85 (8) O1B—C3B—C4B—C5B 179.73 (9)
C2A—C3A—C4A—C5A −2.41 (13) C2B—C3B—C4B—C5B 0.03 (14)
C3A—C4A—C5A—C6A 0.73 (13) C3B—C4B—C5B—C6B 0.21 (14)
C4A—C5A—C6A—C1A 1.11 (13) C2B—C1B—C6B—C5B −0.02 (14)
C4A—C5A—C6A—C7A −179.37 (8) C2B—C1B—C6B—C7B −179.75 (9)
C2A—C1A—C6A—C5A −1.32 (13) C4B—C5B—C6B—C1B −0.21 (14)
C2A—C1A—C6A—C7A 179.14 (8) C4B—C5B—C6B—C7B 179.53 (9)
C5A—C6A—C7A—O2A −174.44 (9) C1B—C6B—C7B—O2B −177.86 (9)
C1A—C6A—C7A—O2A 5.08 (13) C5B—C6B—C7B—O2B 2.41 (14)
C5A—C6A—C7A—C8A 6.77 (12) C1B—C6B—C7B—C8B 1.60 (13)
C1A—C6A—C7A—C8A −173.71 (8) C5B—C6B—C7B—C8B −178.13 (8)
O2A—C7A—C8A—Cl1A 3.57 (11) O2B—C7B—C8B—Cl1B −4.04 (12)
C6A—C7A—C8A—Cl1A −177.63 (6) C6B—C7B—C8B—Cl1B 176.49 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1B—H2O1···O2Ai 0.812 (16) 1.973 (16) 2.7742 (11) 168.7 (16)
O1A—H1O1···O2Bii 0.840 (16) 1.891 (16) 2.7229 (10) 170.4 (16)
C4A—H4AA···O2Bii 0.95 2.47 3.1780 (12) 131
C8A—H8AA···O1Aiii 0.99 2.58 3.5228 (12) 160
C2B—H2BA···O2Ai 0.95 2.44 3.1603 (12) 133
C4B—H4BA···O1Aiv 0.95 2.58 3.5126 (12) 166

Symmetry codes: (i) x−1, y, z; (ii) x, y, z−1; (iii) −x+1, −y+2, −z; (iv) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5254).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Erian, A. W., Sherif, S. M. & Gaber, H. M. (2003). Molecules, 8, 793–865.
  5. Fun, H.-K., Quah, C. K., Priya, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o818. [DOI] [PMC free article] [PubMed]
  6. Qing, W.-X. & Zhang, W. (2009). Acta Cryst. E65, o2837. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030838/sj5254sup1.cif

e-68-o2424-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030838/sj5254Isup2.hkl

e-68-o2424-Isup2.hkl (213.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030838/sj5254Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES