Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 10;68(Pt 8):o2433. doi: 10.1107/S1600536812030863

N-(2,3-Dihydro-1,4-benzodioxin-6-yl)-4-fluoro­benzene­sulfonamide

Shumaila Younas Mughal a, Islam Ullah Khan a, William T A Harrison b, Muneeb Hayat Khan c,*, Muhammad Nadeem Arshad d
PMCID: PMC3414348  PMID: 22904881

Abstract

In the title compound, C14H12FNO4S, the dihedral angle between the aromatic rings is 50.26 (9)° and the C—S—N—C bond adopts a gauche conformation [torsion angle = −68.12 (15)°]. The dihydro­dioxine ring is disordered over two orientations, which both approximate to half-chairs, in a 0.880 (7):0.120 (7) ratio. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [100]. Weak C—H⋯O and C—H⋯F inter­actions consolidate the packing.

Related literature  

For related structures, see: Khan et al. (2011); Gelbrich et al. (2007).graphic file with name e-68-o2433-scheme1.jpg

Experimental  

Crystal data  

  • C14H12FNO4S

  • M r = 309.31

  • Monoclinic, Inline graphic

  • a = 5.1542 (5) Å

  • b = 22.237 (3) Å

  • c = 12.0706 (13) Å

  • β = 94.422 (3)°

  • V = 1379.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.39 × 0.34 × 0.23 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 11762 measured reflections

  • 3156 independent reflections

  • 2336 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.101

  • S = 1.02

  • 3156 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030863/bt5970sup1.cif

e-68-o2433-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030863/bt5970Isup2.hkl

e-68-o2433-Isup2.hkl (154.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030863/bt5970Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.81 (2) 2.22 (2) 3.009 (2) 164 (2)
C3—H3⋯O1ii 0.93 2.53 3.368 (3) 150
C5—H5⋯O4iii 0.93 2.56 3.391 (2) 149
C8—H8⋯O3iv 0.93 2.52 3.446 (2) 172
C13—H13B⋯F1v 0.97 2.48 3.129 (3) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors are thankful to the Higher Education Commission of Pakistan for providing a grant under the project strengthening the Materials Chemistry Laboratory at GC University, Lahore.

supplementary crystallographic information

Comment

The title compound, (I), (Fig. 1) was examined as part of our ongoing interest in the structural chemistry of sulfonamides (Khan et al., 2011). A number of related structures have been reported by Gelbrich et al. (2007).

The dihedral angle between the C1—C6 and C7—C12 benzene rings in (I) is 50.26 (9)°. The C1—S1—N1—C7 linkage adopts a gauche conformation [torsion angle = -68.12 (15)°] and the bond-angle sum about N1 (H atom coordinates freely refined) is 347.2°, possibly suggesting a hybridization state intermediate between sp2 and sp3. The largest bond angle at the distorted tetrahedral S atom is O1—S1—O2 [120.26 (9)°], which is typical for this class of compound (Khan et al., 2011).

Atoms C13 and C14 and their attached H atoms of the dihydro-dioxin ring are disordered over two sets of sites in a 0.880 (7):0.120 (7) ratio. Both major and minor conformations approximate to a half-chair. In the major conformation, C13 and C14 are displaced from the plane defined by C7—C12/O3/O4 (r.m.s. deviation = 0.037 Å) by 0.212 (3) and -0.556 (3) Å, respectively. The equivalent atoms in the minor component are displaced by -0.44 (3) and 0.41 (2) Å, respectively.

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1) to generate C(4) chains propagating in [100] (Figure 2). Weak C—H···O and C—H···F interactions also occur but there is no aromatic π-π stacking in the structure of (I).

Experimental

0.2 g of 6-amino 1,4-benzodioxan was dissolved in 15 ml dichloromethane and 0.25 g of 4-fluorobenzene sulfonyl chloride was added to the mixture, which was stirred at room temperature overnight. The pH was maintained at 8–9 with triethyamine. On completion of reaction (after TLC) the pH was adjusted to 1–2 with 1 M HCl solution. The organic fraction was collected and the solvent was allowed to evaporate at room temperature. Colourless prisms of (I) were obtained in 95% yield.

Refinement

The N-bond H atom was located in a difference map and its position was freely refined. The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(C,N) was applied.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level. Only the major disorder component is shown.

Fig. 2.

Fig. 2.

The partial packing diagram for (I) showing the formation of C(4) chains: hydrogen bonds are shown as double-dashed lines and all C-bound H atoms are omitted for clarity. Symmetry code: (i) x–1, y, z.

Crystal data

C14H12FNO4S F(000) = 640
Mr = 309.31 Dx = 1.489 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.1542 (5) Å Cell parameters from 1453 reflections
b = 22.237 (3) Å θ = 2.5–25.5°
c = 12.0706 (13) Å µ = 0.26 mm1
β = 94.422 (3)° T = 296 K
V = 1379.3 (3) Å3 Prism, colourless
Z = 4 0.39 × 0.34 × 0.23 mm

Data collection

Bruker APEXII CCD diffractometer 2336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
Graphite monochromator θmax = 27.5°, θmin = 1.8°
ω scans h = −6→5
11762 measured reflections k = −28→28
3156 independent reflections l = −15→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.3224P] where P = (Fo2 + 2Fc2)/3
3156 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5881 (3) 0.25665 (7) 0.60034 (14) 0.0404 (4)
C2 0.7189 (4) 0.23608 (9) 0.51210 (17) 0.0565 (5)
H2 0.8515 0.2590 0.4852 0.068*
C3 0.6514 (5) 0.18133 (10) 0.46402 (18) 0.0664 (6)
H3 0.7375 0.1668 0.4046 0.080*
C4 0.4572 (4) 0.14930 (9) 0.50536 (17) 0.0564 (5)
C5 0.3224 (4) 0.16869 (8) 0.59056 (17) 0.0543 (5)
H5 0.1876 0.1458 0.6154 0.065*
C6 0.3891 (4) 0.22311 (8) 0.63959 (15) 0.0482 (4)
H6 0.3006 0.2371 0.6987 0.058*
F1 0.3949 (3) 0.09489 (6) 0.45976 (12) 0.0886 (4)
C7 0.4989 (3) 0.39470 (7) 0.48965 (15) 0.0429 (4)
C8 0.6750 (3) 0.43897 (7) 0.46691 (15) 0.0434 (4)
H8 0.7859 0.4549 0.5239 0.052*
C9 0.6860 (3) 0.45950 (7) 0.35926 (14) 0.0415 (4)
C10 0.5168 (3) 0.43651 (8) 0.27495 (15) 0.0457 (4)
C11 0.3469 (4) 0.39124 (9) 0.29867 (18) 0.0613 (5)
H11 0.2378 0.3746 0.2417 0.074*
C12 0.3366 (4) 0.37037 (9) 0.40506 (18) 0.0583 (5)
H12 0.2208 0.3399 0.4202 0.070*
C13 0.8923 (7) 0.51508 (15) 0.2265 (2) 0.0598 (8) 0.880 (7)
H13A 1.0029 0.4842 0.1985 0.072* 0.880 (7)
H13B 0.9770 0.5536 0.2185 0.072* 0.880 (7)
C13A 0.794 (6) 0.5341 (11) 0.2265 (19) 0.064 (7)* 0.120 (7)
H13C 0.6299 0.5555 0.2269 0.076* 0.120 (7)
H13D 0.9283 0.5628 0.2111 0.076* 0.120 (7)
C14 0.6350 (6) 0.51509 (11) 0.1600 (2) 0.0578 (9) 0.880 (7)
H14A 0.5239 0.5459 0.1879 0.069* 0.880 (7)
H14B 0.6601 0.5241 0.0830 0.069* 0.880 (7)
C14A 0.775 (4) 0.4882 (9) 0.1419 (15) 0.058 (6)* 0.120 (7)
H14C 0.9199 0.4603 0.1504 0.070* 0.120 (7)
H14D 0.7654 0.5054 0.0679 0.070* 0.120 (7)
S1 0.66702 (8) 0.32659 (2) 0.66316 (4) 0.04491 (14)
N1 0.4773 (3) 0.37724 (7) 0.60361 (14) 0.0490 (4)
H1 0.330 (4) 0.3731 (9) 0.6218 (16) 0.059*
O1 0.5996 (3) 0.32377 (7) 0.77539 (11) 0.0620 (4)
O2 0.9274 (2) 0.34095 (6) 0.63905 (12) 0.0603 (4)
O3 0.8603 (2) 0.50425 (6) 0.34055 (10) 0.0564 (4)
O4 0.5128 (3) 0.45743 (6) 0.16736 (11) 0.0586 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0334 (9) 0.0456 (9) 0.0420 (9) 0.0026 (7) 0.0025 (7) 0.0036 (7)
C2 0.0493 (12) 0.0695 (12) 0.0524 (11) −0.0057 (9) 0.0153 (9) −0.0025 (9)
C3 0.0714 (15) 0.0770 (14) 0.0526 (12) 0.0018 (11) 0.0160 (10) −0.0162 (10)
C4 0.0634 (14) 0.0503 (10) 0.0537 (12) 0.0027 (9) −0.0074 (10) −0.0055 (9)
C5 0.0500 (12) 0.0474 (10) 0.0659 (13) −0.0054 (8) 0.0062 (9) 0.0070 (9)
C6 0.0437 (11) 0.0485 (9) 0.0536 (11) 0.0015 (8) 0.0120 (8) 0.0043 (8)
F1 0.1154 (12) 0.0617 (8) 0.0870 (10) −0.0070 (7) −0.0023 (8) −0.0230 (7)
C7 0.0333 (9) 0.0413 (8) 0.0543 (11) 0.0025 (7) 0.0050 (7) −0.0014 (7)
C8 0.0368 (9) 0.0424 (9) 0.0500 (10) −0.0032 (7) −0.0025 (7) −0.0069 (7)
C9 0.0337 (9) 0.0372 (8) 0.0530 (10) −0.0017 (6) 0.0007 (7) −0.0061 (7)
C10 0.0435 (10) 0.0427 (9) 0.0500 (11) 0.0015 (7) −0.0034 (8) −0.0053 (7)
C11 0.0547 (13) 0.0606 (12) 0.0653 (13) −0.0182 (9) −0.0154 (10) −0.0056 (10)
C12 0.0457 (11) 0.0553 (11) 0.0725 (14) −0.0174 (9) −0.0049 (9) 0.0033 (10)
C13 0.0550 (18) 0.0660 (17) 0.0580 (16) −0.0102 (14) 0.0026 (12) 0.0107 (12)
C14 0.0650 (19) 0.0518 (13) 0.0555 (15) −0.0002 (11) −0.0029 (12) 0.0041 (10)
S1 0.0329 (2) 0.0524 (3) 0.0494 (3) −0.00419 (18) 0.00263 (17) −0.00209 (19)
N1 0.0342 (8) 0.0510 (8) 0.0630 (10) 0.0015 (7) 0.0122 (7) 0.0001 (7)
O1 0.0648 (9) 0.0763 (9) 0.0449 (8) −0.0063 (7) 0.0039 (6) −0.0058 (6)
O2 0.0297 (7) 0.0679 (9) 0.0833 (10) −0.0074 (6) 0.0038 (6) −0.0003 (7)
O3 0.0567 (9) 0.0584 (8) 0.0529 (8) −0.0218 (6) −0.0032 (6) 0.0030 (6)
O4 0.0665 (9) 0.0568 (8) 0.0505 (8) −0.0093 (6) −0.0090 (6) −0.0024 (6)

Geometric parameters (Å, º)

C1—C6 1.381 (2) C11—C12 1.370 (3)
C1—C2 1.381 (2) C11—H11 0.9300
C1—S1 1.7640 (17) C12—H12 0.9300
C2—C3 1.382 (3) C13—O3 1.419 (3)
C2—H2 0.9300 C13—C14 1.496 (4)
C3—C4 1.355 (3) C13—H13A 0.9700
C3—H3 0.9300 C13—H13B 0.9700
C4—C5 1.355 (3) C13A—C14A 1.44 (3)
C4—F1 1.357 (2) C13A—O3 1.54 (2)
C5—C6 1.379 (3) C13A—H13C 0.9700
C5—H5 0.9300 C13A—H13D 0.9700
C6—H6 0.9300 C14—O4 1.434 (3)
C7—C12 1.379 (2) C14—H14A 0.9700
C7—C8 1.381 (2) C14—H14B 0.9700
C7—N1 1.442 (2) C14A—O4 1.566 (18)
C8—C9 1.383 (2) C14A—H14C 0.9700
C8—H8 0.9300 C14A—H14D 0.9700
C9—O3 1.371 (2) S1—O1 1.4256 (14)
C9—C10 1.386 (2) S1—O2 1.4312 (13)
C10—O4 1.378 (2) S1—N1 1.6228 (16)
C10—C11 1.379 (3) N1—H1 0.81 (2)
C6—C1—C2 120.33 (17) O3—C13—H13A 109.5
C6—C1—S1 118.77 (13) C14—C13—H13A 109.5
C2—C1—S1 120.88 (14) O3—C13—H13B 109.5
C1—C2—C3 119.58 (19) C14—C13—H13B 109.5
C1—C2—H2 120.2 H13A—C13—H13B 108.1
C3—C2—H2 120.2 C14A—C13A—O3 109.0 (18)
C4—C3—C2 118.54 (19) C14A—C13A—H13C 109.9
C4—C3—H3 120.7 O3—C13A—H13C 109.9
C2—C3—H3 120.7 C14A—C13A—H13D 109.9
C3—C4—C5 123.30 (19) O3—C13A—H13D 109.9
C3—C4—F1 118.53 (19) H13C—C13A—H13D 108.3
C5—C4—F1 118.17 (19) O4—C14—C13 110.0 (2)
C4—C5—C6 118.64 (18) O4—C14—H14A 109.7
C4—C5—H5 120.7 C13—C14—H14A 109.7
C6—C5—H5 120.7 O4—C14—H14B 109.7
C5—C6—C1 119.59 (17) C13—C14—H14B 109.7
C5—C6—H6 120.2 H14A—C14—H14B 108.2
C1—C6—H6 120.2 C13A—C14A—O4 100.5 (18)
C12—C7—C8 120.18 (17) C13A—C14A—H14C 111.7
C12—C7—N1 120.90 (16) O4—C14A—H14C 111.7
C8—C7—N1 118.81 (16) C13A—C14A—H14D 111.7
C7—C8—C9 119.83 (16) O4—C14A—H14D 111.7
C7—C8—H8 120.1 H14C—C14A—H14D 109.4
C9—C8—H8 120.1 O1—S1—O2 120.26 (9)
O3—C9—C8 117.99 (14) O1—S1—N1 105.59 (9)
O3—C9—C10 122.01 (16) O2—S1—N1 107.32 (9)
C8—C9—C10 119.95 (16) O1—S1—C1 107.74 (8)
O4—C10—C11 118.58 (16) O2—S1—C1 107.34 (8)
O4—C10—C9 122.02 (16) N1—S1—C1 108.09 (8)
C11—C10—C9 119.39 (17) C7—N1—S1 121.42 (12)
C12—C11—C10 120.85 (17) C7—N1—H1 115.5 (14)
C12—C11—H11 119.6 S1—N1—H1 110.2 (15)
C10—C11—H11 119.6 C9—O3—C13 114.18 (15)
C11—C12—C7 119.74 (17) C9—O3—C13A 110.9 (10)
C11—C12—H12 120.1 C10—O4—C14 112.66 (14)
C7—C12—H12 120.1 C10—O4—C14A 112.4 (7)
O3—C13—C14 110.8 (2)
C6—C1—C2—C3 −0.8 (3) C2—C1—S1—O1 −153.38 (16)
S1—C1—C2—C3 −179.50 (16) C6—C1—S1—O2 158.72 (14)
C1—C2—C3—C4 0.0 (3) C2—C1—S1—O2 −22.52 (18)
C2—C3—C4—C5 1.1 (3) C6—C1—S1—N1 −85.80 (15)
C2—C3—C4—F1 −178.54 (19) C2—C1—S1—N1 92.95 (16)
C3—C4—C5—C6 −1.5 (3) C12—C7—N1—S1 97.69 (19)
F1—C4—C5—C6 178.17 (17) C8—C7—N1—S1 −86.06 (19)
C4—C5—C6—C1 0.7 (3) O1—S1—N1—C7 176.79 (14)
C2—C1—C6—C5 0.4 (3) O2—S1—N1—C7 47.37 (16)
S1—C1—C6—C5 179.15 (14) C1—S1—N1—C7 −68.12 (15)
C12—C7—C8—C9 0.9 (3) C8—C9—O3—C13 169.3 (2)
N1—C7—C8—C9 −175.37 (15) C10—C9—O3—C13 −13.3 (3)
C7—C8—C9—O3 178.83 (15) C8—C9—O3—C13A −163.5 (11)
C7—C8—C9—C10 1.3 (3) C10—C9—O3—C13A 13.9 (11)
O3—C9—C10—O4 −0.3 (3) C14—C13—O3—C9 43.1 (3)
C8—C9—C10—O4 177.12 (15) C14—C13—O3—C13A −45 (2)
O3—C9—C10—C11 179.60 (17) C14A—C13A—O3—C9 −54 (2)
C8—C9—C10—C11 −3.0 (3) C14A—C13A—O3—C13 48.9 (19)
O4—C10—C11—C12 −177.64 (18) C11—C10—O4—C14 161.9 (2)
C9—C10—C11—C12 2.5 (3) C9—C10—O4—C14 −18.2 (3)
C10—C11—C12—C7 −0.3 (3) C11—C10—O4—C14A −157.3 (9)
C8—C7—C12—C11 −1.5 (3) C9—C10—O4—C14A 22.6 (9)
N1—C7—C12—C11 174.74 (18) C13—C14—O4—C10 47.5 (3)
O3—C13—C14—O4 −61.6 (4) C13—C14—O4—C14A −50.3 (11)
O3—C13A—C14A—O4 72 (2) C13A—C14A—O4—C10 −57.2 (18)
C6—C1—S1—O1 27.86 (16) C13A—C14A—O4—C14 41.3 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.81 (2) 2.22 (2) 3.009 (2) 164 (2)
C3—H3···O1ii 0.93 2.53 3.368 (3) 150
C5—H5···O4iii 0.93 2.56 3.391 (2) 149
C8—H8···O3iv 0.93 2.52 3.446 (2) 172
C13—H13B···F1v 0.97 2.48 3.129 (3) 125

Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+2, −y+1, −z+1; (v) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5970).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  4. Khan, M. H., Khan, I. U., Arshad, M. N., Mughal, S. Y. & Akkurt, M. (2011). Acta Cryst. E67, o885–o886. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030863/bt5970sup1.cif

e-68-o2433-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030863/bt5970Isup2.hkl

e-68-o2433-Isup2.hkl (154.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030863/bt5970Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES