Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 14;68(Pt 8):o2447–o2448. doi: 10.1107/S160053681203139X

(2RS)-2-(2,4-Difluoro­phen­yl)-1-[(4-iodo­benz­yl)(meth­yl)amino]-3-(1H-1,2,4-tri­azol-1-yl)propan-2-ol

Hui-Ping Xiong a, Shou-Hong Gao b, Chun-Tong Li b, Zhi-Jun Wu b,*
PMCID: PMC3414360  PMID: 22904893

Abstract

In the title compound (common name: iodiconazole), C19H19F2IN4O, there is an intra­molecular O—H⋯N hydrogen bond and mol­ecules are linked by weak inter­actions only, namely C—H⋯N, C—H⋯O and C—H⋯F hydrogen bonds, and π-electron ring–π-electron ring inter­actions between the triazole rings with centroid–centroid distances of 3.725 (3) Å.

Related literature  

For the pharmacological activity of azole compounds, see Fromtling (1988); Gallagher et al. (2003). For a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determination of trace amounts of iodiconazole in human plasma, see Gao et al. (2009). For an ultra-fast LC method for the determination of iodiconazole in microdialysis samples and its application in the calibration of laboratory-made linear probes, see Sun et al. (2010). For the high-performance liquid chromatographic (HPLC) determination of iodiconazole in rat plasma, see Wen et al. (2007). For the synthesis of iodiconazole, see Sheng et al. (2002); Zhang et al. (2001). For classification of the hydrogen bonds, see Gilli & Gilli (2009).graphic file with name e-68-o2447-scheme1.jpg

Experimental  

Crystal data  

  • C19H19F2IN4O

  • M r = 484.28

  • Monoclinic, Inline graphic

  • a = 34.398 (14) Å

  • b = 5.812 (2) Å

  • c = 21.619 (9) Å

  • β = 114.895 (5)°

  • V = 3921 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.25 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.635, T max = 0.681

  • 8473 measured reflections

  • 3929 independent reflections

  • 3441 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.103

  • S = 1.07

  • 3929 reflections

  • 249 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203139X/fb2257sup1.cif

e-68-o2447-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203139X/fb2257Isup2.hkl

e-68-o2447-Isup2.hkl (192.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203139X/fb2257Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N2 0.97 2.60 3.045 (4) 108
C9—H9B⋯N4 0.97 2.42 3.191 (4) 136
C12—H12A⋯O1 0.93 2.39 2.759 (4) 103
C17—H17A⋯F1 0.97 2.43 3.061 (4) 122
O1—H1⋯N1 0.81 (2) 1.97 (3) 2.651 (4) 141 (4)

Acknowledgments

The authors thank Dr Zhen-Xia Chen (Department of Chemistry, Fudan University, Shanghai) for the structure analysis.

supplementary crystallographic information

Comment

Azole antifungal drugs play chief role in the treatment of fungal infections. Azole drugs are advantageous because they undergo stable metabolism and can be applied either per os or by injection. They are efficient for internal and external fungal infections (Gallagher et al., 2003), too. In order to obtain new compounds with more potent activity, less toxicity and a broader antifungal spectrum, several azole compounds have been synthesized (Sheng et al., 2002; Zhang et al., 2001). Herein we report the crystal structure determination of the title compound which belongs to the same chemical class.

There is an intramolecular O1—H1···N1 hydrogen bond of moderate strength in the structure. (Table 1; For classification of the hydrogen bonds, see Gilli & Gilli, 2009). The molecules are linked by weak C—H···N, C—H···O and C—H···F hydrogen bonds (Table 1). Moreover, there are π-electron ring—π-electron ring interactions between the triazole rings with the centroid distances of 3.725 (3) Å with the symmetry code of the second ring is -x, y, 3/2-z.

Experimental

The title compound was prepared according to the procedure described by Sheng et al. (2002): To a stirred mixture of 1-[2-(2,4-difluorophenyl)-2,3-epoxypropyl]-1H-1,2,4-triazole methanesulphonate (3 g, 0.009 mol), anhydrous CH3OH (20 ml) and NaOH (0.4 g), 4-iodo-N-methyl-benzylamine (4.46 g, 0.022 mol) was added. The mixture was heated at 50–60 C° for 6 h. The reaction was monitored by thin-layer chromatography (TLC). The resulting mixture was kept at room temperature for 12 h. After filtration, the filtrate was evaporated under reduced pressure. Water (50 ml) was added to the residue and it was extracted with ethyl acetate (3 × 100 ml). The extract was washed with saturated NaCl solution (50 ml × 3), dried over anhydrous Na2SO4 and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc 1: 1 v/v) to afford iodiconazole. Single crystals (colourless prisms) were grown by slow evaporation of a solution of the title compound in petroleum ether/acetone (1:1, v/v) at room temperature.

Refinement

All the hydrogens were discernible in the difference electron density map. Despite of it the hydrogens attached to the C atoms were treated in the riding atom formalism: Caryl—H=0.93 , Cmethyl—H=0.96, Cmethylene—H=0.97 Å. Uiso(H)=1.2Ueq(Caryl/methylene), Uiso(H)=1.5Ueq(Cmethyl). The positional parameters of the hydroxyl hydrogen H1 were refined applying the distance restraint O1-H1 distance equal to 0.82 (2) Å. Uiso(H1)=1.5Ueq(O1).

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as small spheres of arbitrary radius.

Crystal data

C19H19F2IN4O F(000) = 1920
Mr = 484.28 Dx = 1.641 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 935 reflections
a = 34.398 (14) Å θ = 2.4–27.3°
b = 5.812 (2) Å µ = 1.67 mm1
c = 21.619 (9) Å T = 293 K
β = 114.895 (5)° Prism, colourless
V = 3921 (3) Å3 0.30 × 0.25 × 0.25 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer 3929 independent reflections
Radiation source: fine-focus sealed tube 3441 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
ω scans θmax = 26.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −42→37
Tmin = 0.635, Tmax = 0.681 k = −7→6
8473 measured reflections l = −20→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0625P)2 + 1.2617P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3929 reflections Δρmax = 0.66 e Å3
249 parameters Δρmin = −0.89 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
72 constraints Extinction coefficient: 0.0042 (2)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.039478 (7) 0.71329 (5) 1.084656 (12) 0.05727 (14)
O1 0.14979 (9) 0.4892 (4) 0.86484 (13) 0.0526 (6)
H1 0.1635 (13) 0.562 (7) 0.8990 (16) 0.079*
F1 0.12653 (7) 1.0421 (3) 0.72386 (10) 0.0579 (5)
F2 0.21734 (8) 0.6966 (5) 0.64091 (13) 0.0730 (7)
N1 0.18407 (7) 0.8775 (4) 0.92893 (12) 0.0381 (5)
N2 0.06131 (9) 0.6265 (5) 0.81152 (15) 0.0512 (7)
N3 0.02469 (12) 0.4885 (7) 0.8643 (2) 0.0786 (11)
N4 0.04556 (10) 0.8147 (6) 0.8307 (2) 0.0631 (9)
C1 0.08547 (10) 0.8148 (6) 1.04983 (16) 0.0428 (7)
C2 0.11877 (10) 0.6647 (5) 1.05788 (17) 0.0432 (7)
H2A 0.1202 0.5207 1.0775 0.052*
C3 0.14984 (11) 0.7318 (5) 1.03632 (17) 0.0423 (7)
H3A 0.1722 0.6319 1.0421 0.051*
C4 0.14813 (9) 0.9441 (5) 1.00639 (15) 0.0388 (6)
C5 0.11418 (11) 1.0879 (5) 0.99801 (16) 0.0451 (7)
H5A 0.1122 1.2298 0.9769 0.054*
C6 0.08326 (10) 1.0275 (6) 1.01995 (17) 0.0486 (7)
H6A 0.0612 1.1288 1.0147 0.058*
C7 0.18278 (10) 1.0181 (5) 0.98510 (15) 0.0432 (7)
H7A 0.1782 1.1778 0.9708 0.052*
H7B 0.2103 1.0078 1.0242 0.052*
C8 0.22209 (10) 0.9452 (7) 0.91844 (18) 0.0532 (8)
H8A 0.2239 0.8528 0.8829 0.080*
H8B 0.2474 0.9226 0.9599 0.080*
H8C 0.2198 1.1045 0.9056 0.080*
C9 0.14435 (9) 0.9017 (5) 0.86661 (15) 0.0383 (6)
H9A 0.1464 1.0359 0.8415 0.046*
H9B 0.1205 0.9248 0.8787 0.046*
C10 0.13590 (9) 0.6840 (5) 0.82054 (16) 0.0378 (6)
C11 0.15886 (9) 0.6898 (5) 0.77369 (15) 0.0375 (6)
C12 0.18560 (10) 0.5119 (5) 0.77230 (17) 0.0471 (7)
H12A 0.1903 0.3885 0.8020 0.056*
C13 0.20542 (11) 0.5125 (6) 0.72800 (19) 0.0535 (8)
H13A 0.2232 0.3917 0.7280 0.064*
C14 0.19842 (11) 0.6929 (6) 0.68468 (18) 0.0490 (8)
C15 0.17194 (11) 0.8736 (6) 0.68202 (16) 0.0473 (7)
H15A 0.1671 0.9949 0.6516 0.057*
C16 0.15292 (9) 0.8656 (5) 0.72667 (15) 0.0392 (6)
C17 0.08801 (11) 0.6515 (6) 0.77506 (18) 0.0499 (8)
H17A 0.0779 0.7828 0.7448 0.060*
H17B 0.0845 0.5160 0.7470 0.060*
C18 0.02440 (14) 0.7188 (9) 0.8626 (3) 0.0735 (13)
H18A 0.0101 0.8059 0.8827 0.088*
C19 0.04840 (13) 0.4356 (8) 0.8317 (2) 0.0675 (11)
H19A 0.0551 0.2866 0.8239 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.04130 (16) 0.0808 (2) 0.05347 (18) −0.01084 (10) 0.02357 (12) −0.00551 (11)
O1 0.0739 (16) 0.0366 (11) 0.0525 (14) −0.0017 (11) 0.0318 (13) 0.0096 (10)
F1 0.0711 (12) 0.0534 (11) 0.0545 (11) 0.0266 (10) 0.0318 (10) 0.0207 (9)
F2 0.0674 (15) 0.1079 (19) 0.0620 (14) −0.0039 (13) 0.0450 (13) −0.0128 (13)
N1 0.0346 (12) 0.0465 (13) 0.0348 (12) −0.0034 (10) 0.0161 (10) 0.0018 (10)
N2 0.0443 (15) 0.0601 (16) 0.0555 (17) −0.0121 (13) 0.0270 (14) −0.0102 (14)
N3 0.069 (2) 0.095 (3) 0.092 (3) −0.020 (2) 0.054 (2) −0.009 (2)
N4 0.0486 (17) 0.067 (2) 0.078 (2) −0.0083 (14) 0.0309 (17) −0.0192 (17)
C1 0.0370 (15) 0.0553 (18) 0.0365 (15) −0.0055 (13) 0.0159 (13) −0.0072 (13)
C2 0.0497 (17) 0.0382 (15) 0.0451 (17) −0.0023 (12) 0.0232 (15) 0.0025 (12)
C3 0.0460 (17) 0.0410 (15) 0.0448 (17) 0.0051 (12) 0.0241 (15) 0.0024 (13)
C4 0.0432 (15) 0.0389 (15) 0.0341 (14) −0.0047 (12) 0.0160 (12) −0.0046 (11)
C5 0.0547 (17) 0.0373 (15) 0.0426 (17) 0.0024 (13) 0.0198 (14) 0.0048 (13)
C6 0.0446 (16) 0.0522 (18) 0.0471 (18) 0.0099 (14) 0.0174 (14) 0.0009 (14)
C7 0.0460 (15) 0.0450 (16) 0.0392 (16) −0.0108 (13) 0.0184 (13) −0.0038 (13)
C8 0.0389 (15) 0.074 (2) 0.0492 (19) −0.0104 (15) 0.0214 (14) 0.0001 (17)
C9 0.0384 (14) 0.0405 (15) 0.0380 (15) 0.0016 (12) 0.0179 (12) 0.0011 (12)
C10 0.0399 (15) 0.0367 (14) 0.0394 (16) −0.0013 (11) 0.0192 (13) 0.0020 (12)
C11 0.0396 (15) 0.0373 (14) 0.0350 (15) −0.0014 (11) 0.0152 (13) 0.0002 (11)
C12 0.0521 (17) 0.0379 (15) 0.0497 (18) 0.0068 (13) 0.0200 (15) 0.0032 (13)
C13 0.0469 (17) 0.0555 (19) 0.060 (2) 0.0086 (14) 0.0242 (16) −0.0091 (16)
C14 0.0409 (17) 0.069 (2) 0.0398 (17) −0.0059 (15) 0.0197 (14) −0.0122 (15)
C15 0.0487 (17) 0.0569 (18) 0.0345 (16) −0.0043 (15) 0.0157 (14) 0.0051 (14)
C16 0.0407 (15) 0.0408 (15) 0.0366 (15) 0.0042 (12) 0.0167 (13) 0.0015 (12)
C17 0.0450 (17) 0.064 (2) 0.0450 (18) −0.0134 (15) 0.0234 (15) −0.0101 (15)
C18 0.049 (2) 0.104 (4) 0.081 (3) −0.012 (2) 0.040 (2) −0.025 (3)
C19 0.061 (2) 0.068 (2) 0.087 (3) −0.0139 (19) 0.044 (2) −0.007 (2)

Geometric parameters (Å, º)

I1—C1 2.103 (3) C6—H6A 0.9300
O1—C10 1.429 (4) C7—H7A 0.9700
O1—H1 0.810 (19) C7—H7B 0.9700
F1—C16 1.354 (3) C8—H8A 0.9600
F2—C14 1.356 (4) C8—H8B 0.9600
N1—C9 1.467 (4) C8—H8C 0.9600
N1—C8 1.472 (4) C9—C10 1.560 (4)
N1—C7 1.480 (4) C9—H9A 0.9700
N2—C19 1.335 (5) C9—H9B 0.9700
N2—N4 1.360 (4) C10—C11 1.525 (4)
N2—C17 1.448 (4) C10—C17 1.534 (4)
N3—C19 1.320 (5) C11—C12 1.393 (4)
N3—C18 1.339 (6) C11—C16 1.394 (4)
N4—C18 1.319 (6) C12—C13 1.390 (5)
C1—C6 1.382 (5) C12—H12A 0.9300
C1—C2 1.391 (5) C13—C14 1.358 (5)
C2—C3 1.390 (5) C13—H13A 0.9300
C2—H2A 0.9300 C14—C15 1.375 (5)
C3—C4 1.383 (4) C15—C16 1.376 (4)
C3—H3A 0.9300 C15—H15A 0.9300
C4—C5 1.385 (4) C17—H17A 0.9700
C4—C7 1.510 (4) C17—H17B 0.9700
C5—C6 1.380 (5) C18—H18A 0.9300
C5—H5A 0.9300 C19—H19A 0.9300
C10—O1—H1 96 (3) C10—C9—H9A 109.4
C9—N1—C8 112.2 (2) N1—C9—H9B 109.4
C9—N1—C7 111.3 (2) C10—C9—H9B 109.4
C8—N1—C7 108.3 (2) H9A—C9—H9B 108.0
C19—N2—N4 109.8 (3) O1—C10—C11 110.0 (2)
C19—N2—C17 129.5 (3) O1—C10—C17 107.3 (3)
N4—N2—C17 120.7 (3) C11—C10—C17 107.1 (2)
C19—N3—C18 102.5 (4) O1—C10—C9 107.2 (2)
C18—N4—N2 101.4 (3) C11—C10—C9 113.4 (2)
C6—C1—C2 120.0 (3) C17—C10—C9 111.7 (3)
C6—C1—I1 121.1 (2) C12—C11—C16 115.1 (3)
C2—C1—I1 118.9 (2) C12—C11—C10 122.0 (3)
C3—C2—C1 119.4 (3) C16—C11—C10 122.9 (3)
C3—C2—H2A 120.3 C13—C12—C11 122.2 (3)
C1—C2—H2A 120.3 C13—C12—H12A 118.9
C4—C3—C2 121.3 (3) C11—C12—H12A 118.9
C4—C3—H3A 119.3 C14—C13—C12 118.8 (3)
C2—C3—H3A 119.3 C14—C13—H13A 120.6
C3—C4—C5 117.9 (3) C12—C13—H13A 120.6
C3—C4—C7 120.9 (3) F2—C14—C13 119.7 (3)
C5—C4—C7 121.2 (3) F2—C14—C15 117.6 (3)
C6—C5—C4 122.0 (3) C13—C14—C15 122.7 (3)
C6—C5—H5A 119.0 C14—C15—C16 116.5 (3)
C4—C5—H5A 119.0 C14—C15—H15A 121.7
C5—C6—C1 119.3 (3) C16—C15—H15A 121.7
C5—C6—H6A 120.3 F1—C16—C15 116.8 (3)
C1—C6—H6A 120.3 F1—C16—C11 118.5 (3)
N1—C7—C4 113.2 (2) C15—C16—C11 124.7 (3)
N1—C7—H7A 108.9 N2—C17—C10 114.8 (3)
C4—C7—H7A 108.9 N2—C17—H17A 108.6
N1—C7—H7B 108.9 C10—C17—H17A 108.6
C4—C7—H7B 108.9 N2—C17—H17B 108.6
H7A—C7—H7B 107.8 C10—C17—H17B 108.6
N1—C8—H8A 109.5 H17A—C17—H17B 107.5
N1—C8—H8B 109.5 N4—C18—N3 116.0 (4)
H8A—C8—H8B 109.5 N4—C18—H18A 122.0
N1—C8—H8C 109.5 N3—C18—H18A 122.0
H8A—C8—H8C 109.5 N3—C19—N2 110.3 (4)
H8B—C8—H8C 109.5 N3—C19—H19A 124.9
N1—C9—C10 111.1 (2) N2—C19—H19A 124.9
N1—C9—H9A 109.4

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9B···N2 0.97 2.60 3.045 (4) 108
C9—H9B···N4 0.97 2.42 3.191 (4) 136
C12—H12A···O1 0.93 2.39 2.759 (4) 103
C17—H17A···F1 0.97 2.43 3.061 (4) 122
O1—H1···N1 0.81 (2) 1.97 (3) 2.651 (4) 141 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2257).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fromtling, R. A. (1988). Clin. Microbiol. Rev. 1, 187–217. [DOI] [PMC free article] [PubMed]
  3. Gallagher, J. G., Dodds Ashley, E. S., Drew, R. H. & Perfect, J. R. (2003). Expert Opin. Pharmacother. 4, 147–164. [DOI] [PubMed]
  4. Gao, S. H., Tao, X., Sun, L. N., Sheng, C. Q., Zhang, W. N., Yun, Y. L., Li, J. X., Miao, H. J. & Chen, W. S. (2009). J. Chromatogr. B, 877, 382–386. [DOI] [PubMed]
  5. Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory, p. 61. International Union of Crystallography Book Series. Oxford, New York: Oxford University Press.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheng, C. Q., Zhang, W. N., Ji, H. T., Zhou, Y. J., Song, Y. L., Zhou, J., Lu, J. G. & Yang, S. (2002). J. Chin. Pharm. Sci. 11, 5–10.
  9. Sun, N., Wen, J., Lu, G., Hong, Z. Y., Fan, G. R., Wu, Y. T., Sheng, C. Q. & Zhang, W. N. (2010). J. Pharm. Biomed. Anal. 51, 248–251. [DOI] [PubMed]
  10. Wen, J., Fan, G. R., Hong, Z. Y., Chai, Y. F., Yin, Y. T., Sheng, C. Q. & Zhang, W. N. (2007). J. Pharm. Biomed. Anal. 50, 580–586. [DOI] [PubMed]
  11. Zhang, W. N., Ji, H. T., Zhou, Y. J., Lu, J. G., Zhou, J., Liu, X. L., Zhang, L. & Zhu, J. (2001). Chin. Patent No. CN1292378A.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203139X/fb2257sup1.cif

e-68-o2447-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203139X/fb2257Isup2.hkl

e-68-o2447-Isup2.hkl (192.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203139X/fb2257Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES