Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 14;68(Pt 8):o2453. doi: 10.1107/S1600536812030966

3-Isopropyl-2,6-bis­(4-meth­oxy­phen­yl)­piperidin-4-one

K Ravichandran a, S Sethuvasan b, K Thirunavukarasu b, S Ponnuswamy b,*, M N Ponnuswamy a
PMCID: PMC3414364  PMID: 22904897

Abstract

In the title compound, C22H27NO3, the piperidine ring adopts a slightly distorted chair conformation. The dihedral angle between the two aromatic rings is 60.4 (1)°. In the crystal, the amino group forms a rather long N—H⋯O contact to a methoxy O atom. There are also C—H⋯O interactions present.

Related literature  

For the biological activity of piperidine derivatives, see: Bochringer & Soehne (1961); El-Subbagh et al. (2000); Ganellin & Spickett (1965); Hagenbach & Gysin (1952); Jerom & Spencer (1988); Katritzky & Fan (1990); Perumal et al. (2001); Ravindran et al. (1991); Severs et al. (1965). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2453-scheme1.jpg

Experimental  

Crystal data  

  • C22H27NO3

  • M r = 353.45

  • Orthorhombic, Inline graphic

  • a = 7.5547 (3) Å

  • b = 11.8792 (6) Å

  • c = 22.1103 (10) Å

  • V = 1984.26 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection  

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.983, T max = 0.986

  • 10956 measured reflections

  • 2801 independent reflections

  • 1835 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.121

  • S = 1.03

  • 2801 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030966/bt5928sup1.cif

e-68-o2453-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030966/bt5928Isup2.hkl

e-68-o2453-Isup2.hkl (134.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030966/bt5928Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 2.66 (2) 3.538 (2) 167.4 (17)
C16—H16A⋯O1ii 0.96 2.57 3.474 (4) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

KR thanks the TBI Consultancy, University of Madras, India, for the data collection and the management of Kandaswami Kandar’s College, Velur, Namakkal, Tamilnadu, India, for the encouragement. SP thanks UGC, New Delhi, for financial assistance in the form of a major research project.

supplementary crystallographic information

Comment

In the family of heterocyclic compounds, piperidin-4-ones possess varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), anti-inflammatory and anticancer activities (Katritzky & Fan, 1990). Several 2,6-disubstituted piperidines are found to be useful as tranquillisers (Bochringer & Soehne, 1961) and possess hypotensive activity (Severs et al., 1965), a combination of stimulant and depressant effects on the central nervous system (Ganellin & Spickett, 1965). Also the substitution of methoxy phenyl groups at 2,6-positions is found to be active against CNS subpanels. In addition, the bulkiness of the subtituent in different positons of the piperidine ring leads to the decrease in carcinogenecity (Ravindran et al., 1991). In view of the importance, the crystallographic study of the title compound has been carried out to establish the molecular structure and conformation.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts distorted chair conformation. The puckering (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.121 (3) Å, q3 = 0.569 (3) Å, φ2 = 7.6 (1)° and Δs(N1 & C4) = 1.3 (2)°. The sum of the bond angles around the atom N1 [333.5°] is in accordance with sp3 hybridization.

The best plane of the piperidine ring is oriented with respect to the phenyl rings (C9—C14) & (C18—C23) at angles of 82.8 (1)° & 86.2 (1)°, respectively. The two phenyl rings are set apart with an angle of 60.4 (1)°. The methoxy groups substituted at the phenyl rings are coplanar, which can be seen from the torsion angles of [C13—C12—O1—C7=] 4.4 (4)° for (C9—C14) ring and [C20—C21—O3—C8 =] 1.6 (5)° for (C18—C23) ring.

The packing of the molecules is stabilized by a rather long N-H···O contact and by C—H···O interactions in addition to van der Waals forces.

Experimental

Ammonium acetate (100 mmol), anisaldehyde (200 mmol) and isobutylmethylketone (100 mmol) in ethanol (30 ml) were heated on a hot plate at 50–55° C and after the completion of reaction, water was added and extracted with ether, dried and recrystallized from ethanol.

Refinement

Due to the absence of anomalous scatterers, the absolute configuration could not be determined and Friedel pairs were merged. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The H atom bonded to N was freely refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the molecules viewed down b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C22H27NO3 F(000) = 760
Mr = 353.45 Dx = 1.183 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2938 reflections
a = 7.5547 (3) Å θ = 1.8–28.3°
b = 11.8792 (6) Å µ = 0.08 mm1
c = 22.1103 (10) Å T = 293 K
V = 1984.26 (16) Å3 Black, white crystalline
Z = 4 0.22 × 0.20 × 0.18 mm

Data collection

Bruker SMART APEX CCD detector diffractometer 2801 independent reflections
Radiation source: fine-focus sealed tube 1835 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
ω scans θmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→9
Tmin = 0.983, Tmax = 0.986 k = −15→8
10956 measured reflections l = −27→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0599P] where P = (Fo2 + 2Fc2)/3
2801 reflections (Δ/σ)max = 0.015
241 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H1 0.161 (4) 0.568 (2) 0.1225 (11) 0.049 (7)*
O1 0.3703 (3) 0.80940 (17) −0.10981 (8) 0.0655 (6)
O2 0.6143 (3) 0.2871 (2) 0.15552 (10) 0.0773 (7)
O3 −0.2117 (3) 0.5919 (2) 0.37078 (10) 0.0865 (8)
N1 0.2620 (3) 0.53392 (18) 0.13369 (9) 0.0446 (5)
C2 0.3533 (3) 0.4891 (2) 0.08036 (10) 0.0433 (6)
H2 0.2910 0.4212 0.0669 0.052*
C3 0.5444 (3) 0.4554 (2) 0.09959 (11) 0.0451 (6)
H3 0.5993 0.5241 0.1155 0.054*
C4 0.5323 (4) 0.3749 (3) 0.15235 (13) 0.0556 (7)
C5 0.4118 (4) 0.4096 (3) 0.20247 (12) 0.0676 (9)
H5A 0.4656 0.4711 0.2247 0.081*
H5B 0.3966 0.3470 0.2302 0.081*
C6 0.2300 (3) 0.4469 (2) 0.17908 (12) 0.0507 (6)
H6 0.1737 0.3825 0.1592 0.061*
C7 0.3092 (5) 0.7822 (3) −0.16890 (12) 0.0731 (9)
H7A 0.3785 0.7215 −0.1850 0.110*
H7B 0.3206 0.8469 −0.1946 0.110*
H7C 0.1872 0.7599 −0.1670 0.110*
C8 −0.3714 (6) 0.5342 (4) 0.38404 (18) 0.1054 (14)
H8A −0.4477 0.5363 0.3493 0.158*
H8B −0.4292 0.5699 0.4176 0.158*
H8C −0.3453 0.4574 0.3941 0.158*
C9 0.3520 (3) 0.5733 (2) 0.02940 (10) 0.0413 (5)
C10 0.4059 (3) 0.6843 (2) 0.03831 (12) 0.0508 (6)
H10 0.4390 0.7076 0.0768 0.061*
C11 0.4112 (4) 0.7599 (2) −0.00879 (13) 0.0555 (7)
H11 0.4486 0.8333 −0.0019 0.067*
C12 0.3614 (3) 0.7275 (2) −0.06612 (11) 0.0470 (6)
C13 0.3080 (4) 0.6181 (2) −0.07623 (11) 0.0518 (7)
H13 0.2749 0.5950 −0.1148 0.062*
C14 0.3041 (3) 0.5433 (2) −0.02846 (11) 0.0493 (6)
H14 0.2676 0.4697 −0.0357 0.059*
C15 0.6625 (3) 0.4165 (2) 0.04695 (12) 0.0470 (6)
H15 0.6556 0.4757 0.0162 0.056*
C16 0.8571 (3) 0.4099 (3) 0.06599 (13) 0.0578 (7)
H16A 0.8910 0.4792 0.0851 0.087*
H16B 0.9296 0.3976 0.0309 0.087*
H16C 0.8728 0.3488 0.0939 0.087*
C17 0.6047 (4) 0.3087 (3) 0.01612 (14) 0.0691 (8)
H17A 0.4828 0.3150 0.0043 0.104*
H17B 0.6181 0.2467 0.0436 0.104*
H17C 0.6765 0.2961 −0.0191 0.104*
C18 0.1107 (3) 0.4866 (2) 0.22900 (11) 0.0489 (6)
C19 −0.0469 (3) 0.4320 (2) 0.24044 (12) 0.0521 (6)
H19 −0.0796 0.3720 0.2159 0.063*
C20 −0.1579 (4) 0.4634 (3) 0.28710 (12) 0.0577 (7)
H20 −0.2627 0.4243 0.2939 0.069*
C21 −0.1124 (4) 0.5531 (3) 0.32367 (12) 0.0579 (7)
C22 0.0451 (4) 0.6089 (3) 0.31305 (13) 0.0625 (8)
H22 0.0774 0.6689 0.3377 0.075*
C23 0.1547 (4) 0.5767 (2) 0.26643 (13) 0.0577 (7)
H23 0.2597 0.6156 0.2598 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0953 (15) 0.0511 (11) 0.0502 (11) −0.0043 (11) 0.0027 (10) 0.0050 (9)
O2 0.0696 (13) 0.0697 (14) 0.0927 (15) 0.0253 (12) 0.0052 (11) 0.0272 (12)
O3 0.0879 (16) 0.1049 (19) 0.0665 (14) −0.0023 (15) 0.0205 (12) −0.0176 (13)
N1 0.0394 (10) 0.0469 (13) 0.0475 (12) 0.0030 (10) −0.0020 (9) 0.0051 (10)
C2 0.0364 (10) 0.0433 (14) 0.0503 (13) −0.0006 (10) −0.0025 (10) 0.0002 (11)
C3 0.0401 (11) 0.0420 (14) 0.0532 (14) 0.0022 (10) −0.0056 (11) 0.0021 (13)
C4 0.0427 (13) 0.0603 (18) 0.0638 (17) 0.0085 (13) −0.0080 (12) 0.0113 (15)
C5 0.0638 (17) 0.085 (2) 0.0543 (16) 0.0188 (17) −0.0014 (14) 0.0201 (16)
C6 0.0504 (13) 0.0529 (16) 0.0487 (14) 0.0018 (12) 0.0016 (11) 0.0082 (13)
C7 0.108 (2) 0.068 (2) 0.0435 (16) 0.0003 (19) 0.0086 (17) 0.0070 (15)
C8 0.096 (3) 0.137 (4) 0.083 (2) −0.012 (3) 0.038 (2) −0.014 (2)
C9 0.0333 (10) 0.0407 (14) 0.0499 (14) 0.0004 (10) −0.0019 (10) −0.0008 (11)
C10 0.0588 (15) 0.0479 (16) 0.0457 (14) −0.0043 (13) −0.0080 (12) −0.0018 (13)
C11 0.0693 (17) 0.0400 (15) 0.0572 (16) −0.0103 (13) −0.0047 (14) −0.0029 (13)
C12 0.0519 (13) 0.0414 (16) 0.0478 (14) 0.0024 (12) 0.0057 (11) 0.0012 (12)
C13 0.0661 (16) 0.0472 (16) 0.0420 (14) 0.0008 (12) −0.0071 (12) −0.0036 (12)
C14 0.0567 (14) 0.0383 (14) 0.0529 (15) −0.0021 (11) −0.0056 (12) −0.0028 (12)
C15 0.0413 (11) 0.0454 (14) 0.0543 (14) 0.0048 (11) −0.0024 (11) −0.0031 (12)
C16 0.0431 (13) 0.0596 (18) 0.0706 (18) 0.0027 (12) −0.0004 (13) −0.0089 (15)
C17 0.0547 (16) 0.0677 (19) 0.085 (2) 0.0008 (15) −0.0062 (15) −0.0205 (17)
C18 0.0478 (13) 0.0529 (16) 0.0461 (13) 0.0025 (12) −0.0039 (11) 0.0104 (13)
C19 0.0509 (13) 0.0556 (16) 0.0498 (14) −0.0027 (13) −0.0045 (12) 0.0008 (13)
C20 0.0513 (13) 0.073 (2) 0.0485 (14) −0.0068 (14) 0.0014 (12) 0.0042 (14)
C21 0.0625 (15) 0.0669 (19) 0.0443 (14) 0.0046 (14) 0.0016 (13) 0.0002 (14)
C22 0.0728 (18) 0.0581 (19) 0.0566 (17) −0.0064 (15) −0.0047 (15) −0.0039 (15)
C23 0.0561 (15) 0.0556 (17) 0.0615 (17) −0.0095 (14) −0.0029 (13) 0.0068 (14)

Geometric parameters (Å, º)

O1—C12 1.373 (3) C10—C11 1.376 (4)
O1—C7 1.423 (3) C10—H10 0.9300
O2—C4 1.215 (3) C11—C12 1.377 (4)
O3—C21 1.364 (3) C11—H11 0.9300
O3—C8 1.419 (5) C12—C13 1.379 (4)
N1—C6 1.461 (3) C13—C14 1.381 (4)
N1—C2 1.466 (3) C13—H13 0.9300
N1—H1 0.90 (3) C14—H14 0.9300
C2—C9 1.507 (3) C15—C17 1.515 (4)
C2—C3 1.557 (3) C15—C16 1.531 (3)
C2—H2 0.9800 C15—H15 0.9800
C3—C4 1.512 (4) C16—H16A 0.9600
C3—C15 1.538 (3) C16—H16B 0.9600
C3—H3 0.9800 C16—H16C 0.9600
C4—C5 1.493 (4) C17—H17A 0.9600
C5—C6 1.533 (4) C17—H17B 0.9600
C5—H5A 0.9700 C17—H17C 0.9600
C5—H5B 0.9700 C18—C19 1.380 (4)
C6—C18 1.501 (4) C18—C23 1.392 (4)
C6—H6 0.9800 C19—C20 1.381 (4)
C7—H7A 0.9600 C19—H19 0.9300
C7—H7B 0.9600 C20—C21 1.382 (4)
C7—H7C 0.9600 C20—H20 0.9300
C8—H8A 0.9600 C21—C22 1.382 (4)
C8—H8B 0.9600 C22—C23 1.377 (4)
C8—H8C 0.9600 C22—H22 0.9300
C9—C14 1.377 (3) C23—H23 0.9300
C9—C10 1.393 (4)
C12—O1—C7 118.0 (2) C9—C10—H10 119.4
C21—O3—C8 117.5 (3) C10—C11—C12 120.4 (3)
C6—N1—C2 111.9 (2) C10—C11—H11 119.8
C6—N1—H1 111.7 (16) C12—C11—H11 119.8
C2—N1—H1 109.9 (16) O1—C12—C11 115.9 (2)
N1—C2—C9 110.95 (19) O1—C12—C13 124.6 (2)
N1—C2—C3 108.06 (19) C11—C12—C13 119.5 (2)
C9—C2—C3 112.40 (18) C12—C13—C14 119.3 (2)
N1—C2—H2 108.4 C12—C13—H13 120.4
C9—C2—H2 108.4 C14—C13—H13 120.4
C3—C2—H2 108.4 C9—C14—C13 122.6 (2)
C4—C3—C15 115.4 (2) C9—C14—H14 118.7
C4—C3—C2 108.5 (2) C13—C14—H14 118.7
C15—C3—C2 114.1 (2) C17—C15—C16 111.0 (2)
C4—C3—H3 106.0 C17—C15—C3 115.3 (2)
C15—C3—H3 106.0 C16—C15—C3 111.4 (2)
C2—C3—H3 106.0 C17—C15—H15 106.2
O2—C4—C5 120.4 (3) C16—C15—H15 106.2
O2—C4—C3 123.9 (3) C3—C15—H15 106.2
C5—C4—C3 115.8 (2) C15—C16—H16A 109.5
C4—C5—C6 112.1 (2) C15—C16—H16B 109.5
C4—C5—H5A 109.2 H16A—C16—H16B 109.5
C6—C5—H5A 109.2 C15—C16—H16C 109.5
C4—C5—H5B 109.2 H16A—C16—H16C 109.5
C6—C5—H5B 109.2 H16B—C16—H16C 109.5
H5A—C5—H5B 107.9 C15—C17—H17A 109.5
N1—C6—C18 112.5 (2) C15—C17—H17B 109.5
N1—C6—C5 106.8 (2) H17A—C17—H17B 109.5
C18—C6—C5 112.4 (2) C15—C17—H17C 109.5
N1—C6—H6 108.4 H17A—C17—H17C 109.5
C18—C6—H6 108.4 H17B—C17—H17C 109.5
C5—C6—H6 108.4 C19—C18—C23 117.3 (2)
O1—C7—H7A 109.5 C19—C18—C6 120.4 (2)
O1—C7—H7B 109.5 C23—C18—C6 122.4 (2)
H7A—C7—H7B 109.5 C18—C19—C20 122.3 (3)
O1—C7—H7C 109.5 C18—C19—H19 118.9
H7A—C7—H7C 109.5 C20—C19—H19 118.9
H7B—C7—H7C 109.5 C19—C20—C21 119.6 (3)
O3—C8—H8A 109.5 C19—C20—H20 120.2
O3—C8—H8B 109.5 C21—C20—H20 120.2
H8A—C8—H8B 109.5 O3—C21—C22 116.2 (3)
O3—C8—H8C 109.5 O3—C21—C20 124.8 (3)
H8A—C8—H8C 109.5 C22—C21—C20 119.0 (3)
H8B—C8—H8C 109.5 C23—C22—C21 120.8 (3)
C14—C9—C10 117.0 (2) C23—C22—H22 119.6
C14—C9—C2 121.6 (2) C21—C22—H22 119.6
C10—C9—C2 121.3 (2) C22—C23—C18 121.0 (3)
C11—C10—C9 121.3 (2) C22—C23—H23 119.5
C11—C10—H10 119.4 C18—C23—H23 119.5
C6—N1—C2—C9 168.49 (19) C10—C11—C12—C13 −0.7 (4)
C6—N1—C2—C3 −67.9 (2) O1—C12—C13—C14 −179.8 (2)
N1—C2—C3—C4 54.9 (3) C11—C12—C13—C14 0.5 (4)
C9—C2—C3—C4 177.7 (2) C10—C9—C14—C13 −0.1 (4)
N1—C2—C3—C15 −174.9 (2) C2—C9—C14—C13 −177.6 (2)
C9—C2—C3—C15 −52.1 (3) C12—C13—C14—C9 −0.1 (4)
C15—C3—C4—O2 3.0 (4) C4—C3—C15—C17 61.6 (3)
C2—C3—C4—O2 132.5 (3) C2—C3—C15—C17 −65.1 (3)
C15—C3—C4—C5 −177.4 (2) C4—C3—C15—C16 −66.0 (3)
C2—C3—C4—C5 −47.9 (3) C2—C3—C15—C16 167.3 (2)
O2—C4—C5—C6 −131.9 (3) N1—C6—C18—C19 120.8 (3)
C3—C4—C5—C6 48.5 (4) C5—C6—C18—C19 −118.7 (3)
C2—N1—C6—C18 −170.4 (2) N1—C6—C18—C23 −61.0 (3)
C2—N1—C6—C5 65.9 (3) C5—C6—C18—C23 59.5 (3)
C4—C5—C6—N1 −53.8 (3) C23—C18—C19—C20 −0.5 (4)
C4—C5—C6—C18 −177.6 (3) C6—C18—C19—C20 177.9 (2)
N1—C2—C9—C14 −131.8 (2) C18—C19—C20—C21 0.7 (4)
C3—C2—C9—C14 107.1 (3) C8—O3—C21—C22 −178.0 (3)
N1—C2—C9—C10 50.7 (3) C8—O3—C21—C20 1.6 (5)
C3—C2—C9—C10 −70.4 (3) C19—C20—C21—O3 179.7 (3)
C14—C9—C10—C11 −0.2 (4) C19—C20—C21—C22 −0.8 (4)
C2—C9—C10—C11 177.4 (2) O3—C21—C22—C23 −179.7 (3)
C9—C10—C11—C12 0.6 (4) C20—C21—C22—C23 0.7 (4)
C7—O1—C12—C11 −175.9 (3) C21—C22—C23—C18 −0.5 (4)
C7—O1—C12—C13 4.4 (4) C19—C18—C23—C22 0.4 (4)
C10—C11—C12—O1 179.6 (2) C6—C18—C23—C22 −177.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.90 (2) 2.66 (2) 3.538 (2) 167.4 (17)
C16—H16A···O1ii 0.96 2.57 3.474 (4) 156

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5928).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bochringer, C. F. & Soehne, G. M. B. H. (1961). Chem. Abstr. 55, 24796.
  3. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619–625. [DOI] [PubMed]
  8. Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185. [DOI] [PubMed]
  9. Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.
  10. Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205–3209.
  11. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  12. Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.
  13. Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem. 56, 4833–4840.
  14. Severs, W. B., Kinnard, W. J. & Buckley, J. P. (1965). Chem. Abstr. 63, 10538.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812030966/bt5928sup1.cif

e-68-o2453-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030966/bt5928Isup2.hkl

e-68-o2453-Isup2.hkl (134.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030966/bt5928Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES