Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 18;68(Pt 8):o2462. doi: 10.1107/S1600536812031601

1-(3-Bromo­phen­yl)thio­urea

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Prakash S Nayak b, B Narayana b, B K Sarojini c
PMCID: PMC3414918  PMID: 22904905

Abstract

In the title compound, C7H7BrN2S, the thio­urea moiety is nearly planar (r.m.s. deviation = 0.004 Å) and it forms a dihedral angle of 66.72 (15)° with the benzene ring. The C—N—C—N2 torsion angle is 15.1 (4)°. In the crystal, mol­ecules are linked via N—H⋯S and N—H⋯N hydrogen bonds into sheets lying parallel to (101).

Related literature  

For general background to and related structures of the title compound, see: Fun et al. (2012); Sarojini et al. (2007). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2462-scheme1.jpg

Experimental  

Crystal data  

  • C7H7BrN2S

  • M r = 231.12

  • Triclinic, Inline graphic

  • a = 5.5308 (8) Å

  • b = 8.5316 (12) Å

  • c = 9.4249 (14) Å

  • α = 103.500 (3)°

  • β = 90.878 (3)°

  • γ = 97.232 (4)°

  • V = 428.54 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 100 K

  • 0.23 × 0.16 × 0.07 mm

Data collection  

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.396, T max = 0.716

  • 5292 measured reflections

  • 1481 independent reflections

  • 1354 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.067

  • S = 1.09

  • 1481 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031601/hb6892sup1.cif

e-68-o2462-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031601/hb6892Isup2.hkl

e-68-o2462-Isup2.hkl (73KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031601/hb6892Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S1i 1.05 2.28 3.307 (3) 166
N2—H1N2⋯S1ii 0.96 2.40 3.349 (3) 168
N2—H2N2⋯Br1iii 0.92 2.71 3.468 (2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC for financial assistance through SAP and a BSR one-time grant for the purchase of chemicals.

supplementary crystallographic information

Comment

In continuation of our work on synthesis of thiourea derivatives (Fun et al., 2012; Sarojini et al., 2007), the title compound was prepared and its crystal structure is reported here.

In the title molecule (Fig. 1), the thiourea moiety (S1/N1/N2/C7) is nearly planar (r.m.s. deviation = 0.004 Å) and it forms a dihedral angle of 66.72 (15)° with the benzene ring (C1–C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2012; Sarojini et al., 2007).

In the crystal structure, Fig. 2, molecules are linked via N1—H1N1···S1, N2—H1N2···S1 and N2—H2N2···Br1 hydrogen bonds (Table 1) into two-dimensional sheets parallel to (101).

Experimental

3-Bromoaniline (1.39 g, 0.0081 mol) was refluxed with potassium thiocyanate (1.4 g, 0.0142 mol) in 20 ml of water and 1.6 ml of conc. HCl for 3 h. The reaction mixture was then cooled to room temperature and stirred overnight. The precipitated product was then filtered, washed with water, dried and recrystallised from ethyl acetate as colourless plates (m.p. = 389–391 K).

Refinement

N-bound hydrogen atoms were located in a difference Fourier map and refined using a riding model with Uiso(H) = 1.2Ueq(N) [N—H = 0.9156–1.0468 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C7H7BrN2S Z = 2
Mr = 231.12 F(000) = 228
Triclinic, P1 Dx = 1.791 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.5308 (8) Å Cell parameters from 3285 reflections
b = 8.5316 (12) Å θ = 2.9–29.6°
c = 9.4249 (14) Å µ = 4.97 mm1
α = 103.500 (3)° T = 100 K
β = 90.878 (3)° Plate, colourless
γ = 97.232 (4)° 0.23 × 0.16 × 0.07 mm
V = 428.54 (11) Å3

Data collection

Bruker SMART APEXII DUO CCD diffractometer 1481 independent reflections
Radiation source: fine-focus sealed tube 1354 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→6
Tmin = 0.396, Tmax = 0.716 k = −10→10
5292 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.1495P] where P = (Fo2 + 2Fc2)/3
1481 reflections (Δ/σ)max = 0.001
100 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.80456 (5) 0.08100 (4) 0.30695 (3) 0.02513 (13)
S1 0.39118 (12) 0.25378 (9) 1.02969 (8) 0.01925 (18)
N1 0.7109 (4) 0.3643 (3) 0.8568 (3) 0.0188 (5)
H1N1 0.6478 0.4767 0.8945 0.023*
N2 0.7347 (4) 0.1050 (3) 0.8821 (3) 0.0201 (5)
H1N2 0.6763 0.0004 0.8990 0.024*
H2N2 0.8746 0.1112 0.8318 0.024*
C1 1.0878 (5) 0.4459 (4) 0.7452 (3) 0.0208 (6)
H1A 1.1426 0.5220 0.8340 0.025*
C2 1.2308 (5) 0.4300 (4) 0.6236 (3) 0.0241 (7)
H2A 1.3836 0.4966 0.6297 0.029*
C3 1.1532 (5) 0.3180 (4) 0.4929 (3) 0.0220 (6)
H3A 1.2529 0.3057 0.4108 0.026*
C4 0.9281 (5) 0.2254 (4) 0.4859 (3) 0.0185 (6)
C5 0.7812 (5) 0.2390 (3) 0.6044 (3) 0.0174 (6)
H5A 0.6265 0.1744 0.5972 0.021*
C6 0.8650 (5) 0.3495 (4) 0.7348 (3) 0.0183 (6)
C7 0.6287 (5) 0.2392 (3) 0.9158 (3) 0.0164 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02112 (19) 0.0317 (2) 0.01968 (19) 0.00583 (13) −0.00184 (11) −0.00064 (13)
S1 0.0192 (4) 0.0159 (4) 0.0237 (4) 0.0044 (3) 0.0047 (3) 0.0055 (3)
N1 0.0211 (12) 0.0164 (13) 0.0189 (13) 0.0044 (10) 0.0024 (10) 0.0029 (10)
N2 0.0210 (12) 0.0149 (13) 0.0256 (13) 0.0053 (10) 0.0052 (10) 0.0057 (10)
C1 0.0207 (15) 0.0199 (16) 0.0220 (15) 0.0030 (12) −0.0053 (12) 0.0055 (12)
C2 0.0155 (15) 0.0282 (18) 0.0283 (17) −0.0024 (13) −0.0029 (13) 0.0092 (14)
C3 0.0163 (15) 0.0281 (17) 0.0224 (15) 0.0058 (13) 0.0008 (12) 0.0061 (13)
C4 0.0181 (14) 0.0192 (16) 0.0185 (14) 0.0064 (12) −0.0030 (11) 0.0036 (12)
C5 0.0161 (14) 0.0140 (15) 0.0230 (15) 0.0033 (11) −0.0007 (11) 0.0052 (11)
C6 0.0194 (14) 0.0198 (15) 0.0179 (15) 0.0065 (12) 0.0011 (11) 0.0069 (12)
C7 0.0169 (14) 0.0135 (14) 0.0176 (14) 0.0007 (11) −0.0044 (11) 0.0025 (11)

Geometric parameters (Å, º)

Br1—C4 1.900 (3) C1—C2 1.393 (4)
S1—C7 1.707 (3) C1—H1A 0.9500
N1—C7 1.348 (4) C2—C3 1.395 (4)
N1—C6 1.433 (4) C2—H2A 0.9500
N1—H1N1 1.0468 C3—C4 1.380 (4)
N2—C7 1.327 (4) C3—H3A 0.9500
N2—H1N2 0.9608 C4—C5 1.383 (4)
N2—H2N2 0.9156 C5—C6 1.395 (4)
C1—C6 1.381 (4) C5—H5A 0.9500
C7—N1—C6 123.6 (2) C2—C3—H3A 120.9
C7—N1—H1N1 119.2 C3—C4—C5 122.0 (3)
C6—N1—H1N1 116.9 C3—C4—Br1 120.0 (2)
C7—N2—H1N2 127.4 C5—C4—Br1 117.9 (2)
C7—N2—H2N2 116.3 C4—C5—C6 118.6 (3)
H1N2—N2—H2N2 116.2 C4—C5—H5A 120.7
C6—C1—C2 119.0 (3) C6—C5—H5A 120.7
C6—C1—H1A 120.5 C1—C6—C5 121.0 (3)
C2—C1—H1A 120.5 C1—C6—N1 120.6 (3)
C1—C2—C3 121.1 (3) C5—C6—N1 118.3 (3)
C1—C2—H2A 119.5 N2—C7—N1 118.5 (3)
C3—C2—H2A 119.5 N2—C7—S1 121.2 (2)
C4—C3—C2 118.3 (3) N1—C7—S1 120.3 (2)
C4—C3—H3A 120.9
C6—C1—C2—C3 −0.5 (4) C2—C1—C6—N1 −178.9 (2)
C1—C2—C3—C4 1.4 (4) C4—C5—C6—C1 1.3 (4)
C2—C3—C4—C5 −1.0 (4) C4—C5—C6—N1 179.3 (2)
C2—C3—C4—Br1 176.0 (2) C7—N1—C6—C1 −123.6 (3)
C3—C4—C5—C6 −0.3 (4) C7—N1—C6—C5 58.4 (4)
Br1—C4—C5—C6 −177.34 (19) C6—N1—C7—N2 15.1 (4)
C2—C1—C6—C5 −0.9 (4) C6—N1—C7—S1 −164.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···S1i 1.05 2.28 3.307 (3) 166
N2—H1N2···S1ii 0.96 2.40 3.349 (3) 168
N2—H2N2···Br1iii 0.92 2.71 3.468 (2) 141

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6892).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst E68, o2423. [DOI] [PMC free article] [PubMed]
  5. Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3754.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031601/hb6892sup1.cif

e-68-o2462-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031601/hb6892Isup2.hkl

e-68-o2462-Isup2.hkl (73KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031601/hb6892Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES