Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 18;68(Pt 8):o2479. doi: 10.1107/S1600536812032035

2-[(2Z)-Azepan-2-yl­idene]-1-(4-nitro­phen­yl)ethanone

Siyanda T Mthembu a, Lee G Madeley a, Charles B de Koning a, Joseph P Michael a,*
PMCID: PMC3414934  PMID: 22904921

Abstract

The title compound, C14H16N2O3, is an NH-vinyl­ogous amide (enaminone) produced by the reaction of 4-nitro­phenacyl bromide with azepane-2-thione. The conformation about the C=C bond [1.3927 (14) Å] is Z, which allows for the formation of an intra­molecular N—H⋯O hydrogen bond that leads to an S(6) loop. Inversion-related mol­ecules associate via N—H⋯O hydrogen bonds to form a 12-membered {⋯OC3NH}2 synthon.

Related literature  

For uses and reactions of enamino­nes, see: Roth et al. (1971); Paulvannan & Stille (1994); Michael et al. (1999). For related structures, see: Balderson et al. (2007). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o2479-scheme1.jpg

Experimental  

Crystal data  

  • C14H16N2O3

  • M r = 260.29

  • Triclinic, Inline graphic

  • a = 6.7963 (3) Å

  • b = 8.4054 (3) Å

  • c = 11.6649 (5) Å

  • α = 76.508 (2)°

  • β = 81.134 (2)°

  • γ = 80.596 (2)°

  • V = 634.58 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.56 × 0.5 × 0.42 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.905, T max = 0.955

  • 10354 measured reflections

  • 3041 independent reflections

  • 2732 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.116

  • S = 1.06

  • 3041 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032035/tk5129sup1.cif

e-68-o2479-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032035/tk5129Isup2.hkl

e-68-o2479-Isup2.hkl (146.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032035/tk5129Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.897 (16) 1.998 (15) 2.7041 (11) 134.6 (13)
N1—H1⋯O1i 0.897 (16) 2.392 (15) 3.0303 (12) 128.2 (12)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the University of the Witwatersrand, which is thanked for providing the required infrastructure.

supplementary crystallographic information

Comment

The title compound was prepared as part of an ongoing methodological investigation into the use of enaminones in the synthesis of azabicyclic alkaloids (Michael et al., 1999). For example, its reaction with acryloyl chloride, according to the method of Paulvannan & Stille (1994), produced a 2,3,6,7-tetrahydro-5(1H)-indolizinone related to numerous natural products. The crystal structures of analogous 4-bromophenyl enaminones with 5-, 6- and 7-membered rings have been reported (Balderson et al., 2007).

The asymmetric unit of (I) consists of one molecule of 2-[(2Z)-azepan-2-ylidene]-1-(4-nitrophenyl)ethan-1-one (Fig. 1). The hydrogen bonding consists of an intramolecular N—H···O═C hydrogen bond, and an intermolecular N—H···O═C hydrogen bond (Table 1). The combination of these two hydrogen bonds results in an R22(4) ring (Fig. 2) as described by graph set notation (Bernstein et al., 1995).

Experimental

The employed synthesis followed the Eschenmoser procedure (Roth et al., 1971). p-Nitrophenacyl bromide (995 mg, 4.08 mmol) was added to a solution of azepane-2-thione (502 mg, 3.88 mmol) in dry acetonitrile (30 ml). The resulting solution was stirred at room temperature for 4 h, after which S-alkylation was complete as shown by the precipitation of the thioiminium salt. This was then followed by the addition of triphenylphosphine (1.069 g, 4.08 mmol) and triethylamine (413 mg, 4.08 mmol) to induce sulfur extrusion. The reaction mixture was poured into water and the organic components were extracted with diethyl ether (3 × 30 ml). The resulting organic layer was dried over MgSO4, filtered and the solvent removed in vacuo. The resulting residue was purified by column chromatography on silica gel with hexane:ethyl acetate (19:1 v/v) as eluent to yield 2-[(2Z)-azepan-2-ylidene]-1-(4-nitrophenyl)ethan-1-one (829 mg, 82%) as yellow crystals, m.p. 398–400 K.

Refinement

The C-bound H atoms were geometrically placed [C—H = 0.95 Å (alkenyl- and aromatic-H) and 0.99 Å (methylene-H)] and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Hydrogen bonding diagram of the compound. Intermolecular and intramolecular N—H···O hydrogen bonds (shown as dashed red lines) form a four-membered ring. Non-participating H atoms have been omitted for clarity.

Crystal data

C14H16N2O3 Z = 2
Mr = 260.29 F(000) = 276
Triclinic, P1 Dx = 1.362 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.7963 (3) Å Cell parameters from 6539 reflections
b = 8.4054 (3) Å θ = 2.5–28.4°
c = 11.6649 (5) Å µ = 0.10 mm1
α = 76.508 (2)° T = 173 K
β = 81.134 (2)° Block, red
γ = 80.596 (2)° 0.56 × 0.5 × 0.42 mm
V = 634.58 (5) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 2732 reflections with I > 2σ(I)
ω scans Rint = 0.048
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) θmax = 28.0°, θmin = 1.8°
Tmin = 0.905, Tmax = 0.955 h = −8→8
10354 measured reflections k = −11→11
3041 independent reflections l = −15→15

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1127P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039 (Δ/σ)max < 0.001
wR(F2) = 0.116 Δρmax = 0.30 e Å3
S = 1.06 Δρmin = −0.24 e Å3
3041 reflections Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
177 parameters Extinction coefficient: 0.170 (12)
0 restraints

Special details

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.01720 (16) 0.40728 (13) 0.79045 (9) 0.0296 (2)
H1A 1.0007 0.4794 0.8483 0.035*
H1B 1.155 0.4094 0.7482 0.035*
C2 0.99594 (18) 0.23125 (14) 0.85852 (10) 0.0342 (3)
H2A 1.1187 0.1856 0.8974 0.041*
H2B 0.9882 0.1633 0.8009 0.041*
C3 0.8137 (2) 0.21416 (15) 0.95278 (11) 0.0394 (3)
H3A 0.8141 0.096 0.9913 0.047*
H3B 0.8279 0.2735 1.0144 0.047*
C4 0.61162 (18) 0.27927 (13) 0.90694 (10) 0.0333 (3)
H4A 0.5034 0.2527 0.9728 0.04*
H4B 0.5976 0.2215 0.8443 0.04*
C5 0.58338 (16) 0.46611 (13) 0.85608 (9) 0.0281 (2)
H5A 0.4378 0.5065 0.8606 0.034*
H5B 0.6428 0.5213 0.9062 0.034*
C6 0.67677 (15) 0.51517 (12) 0.72942 (9) 0.0248 (2)
C7 0.55481 (15) 0.60086 (12) 0.64327 (9) 0.0256 (2)
H7 0.4135 0.6146 0.665 0.031*
C8 0.63077 (15) 0.66855 (12) 0.52480 (9) 0.0249 (2)
C9 0.48836 (15) 0.78776 (12) 0.44815 (8) 0.0236 (2)
C10 0.28080 (15) 0.78647 (13) 0.46714 (9) 0.0267 (2)
H10 0.2248 0.7046 0.5285 0.032*
C11 0.15532 (15) 0.90342 (13) 0.39730 (9) 0.0270 (2)
H11 0.0138 0.9038 0.411 0.032*
C12 0.24127 (15) 1.01984 (12) 0.30693 (9) 0.0244 (2)
C13 0.44670 (16) 1.02284 (12) 0.28387 (9) 0.0271 (2)
H13 0.5021 1.1028 0.2207 0.033*
C14 0.56934 (15) 0.90611 (13) 0.35534 (9) 0.0273 (2)
H14 0.7107 0.9064 0.3411 0.033*
N1 0.87397 (13) 0.47603 (11) 0.70420 (8) 0.0275 (2)
H1 0.923 (2) 0.5042 (18) 0.6274 (14) 0.042 (4)*
N2 0.10920 (13) 1.14105 (10) 0.23068 (8) 0.0275 (2)
O1 0.81102 (11) 0.64279 (10) 0.48208 (7) 0.0328 (2)
O2 −0.07169 (12) 1.15862 (11) 0.26345 (8) 0.0403 (2)
O3 0.18635 (12) 1.21881 (10) 0.13628 (7) 0.0373 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0269 (5) 0.0327 (5) 0.0286 (5) −0.0022 (4) −0.0067 (4) −0.0047 (4)
C2 0.0361 (6) 0.0315 (5) 0.0320 (6) 0.0020 (4) −0.0066 (5) −0.0036 (4)
C3 0.0462 (7) 0.0339 (6) 0.0301 (6) 0.0000 (5) −0.0018 (5) 0.0034 (4)
C4 0.0379 (6) 0.0319 (5) 0.0276 (5) −0.0090 (4) 0.0047 (4) −0.0041 (4)
C5 0.0294 (5) 0.0320 (5) 0.0213 (5) −0.0027 (4) 0.0015 (4) −0.0062 (4)
C6 0.0267 (5) 0.0249 (5) 0.0224 (5) −0.0042 (4) −0.0002 (4) −0.0056 (4)
C7 0.0225 (5) 0.0283 (5) 0.0241 (5) −0.0023 (4) 0.0005 (4) −0.0045 (4)
C8 0.0238 (5) 0.0262 (5) 0.0241 (5) −0.0030 (4) −0.0017 (4) −0.0050 (4)
C9 0.0241 (5) 0.0245 (5) 0.0218 (5) −0.0030 (4) −0.0008 (4) −0.0057 (4)
C10 0.0265 (5) 0.0286 (5) 0.0233 (5) −0.0064 (4) −0.0012 (4) −0.0017 (4)
C11 0.0213 (5) 0.0326 (5) 0.0262 (5) −0.0048 (4) −0.0016 (4) −0.0047 (4)
C12 0.0265 (5) 0.0233 (5) 0.0235 (5) −0.0016 (4) −0.0040 (4) −0.0055 (4)
C13 0.0283 (5) 0.0258 (5) 0.0257 (5) −0.0063 (4) −0.0014 (4) −0.0020 (4)
C14 0.0217 (5) 0.0313 (5) 0.0272 (5) −0.0050 (4) −0.0006 (4) −0.0036 (4)
N1 0.0253 (4) 0.0332 (5) 0.0211 (4) −0.0019 (3) −0.0017 (3) −0.0023 (3)
N2 0.0282 (5) 0.0251 (4) 0.0286 (4) −0.0026 (3) −0.0040 (3) −0.0047 (3)
O1 0.0236 (4) 0.0398 (4) 0.0278 (4) 0.0009 (3) 0.0021 (3) 0.0002 (3)
O2 0.0263 (4) 0.0435 (5) 0.0434 (5) 0.0029 (3) −0.0038 (3) 0.0004 (4)
O3 0.0378 (5) 0.0363 (4) 0.0319 (4) −0.0056 (3) −0.0043 (3) 0.0049 (3)

Geometric parameters (Å, º)

C1—N1 1.4630 (13) C7—C8 1.4174 (14)
C1—C2 1.5254 (15) C7—H7 0.95
C1—H1A 0.99 C8—O1 1.2535 (12)
C1—H1B 0.99 C8—C9 1.5073 (14)
C2—C3 1.5259 (17) C9—C10 1.3952 (14)
C2—H2A 0.99 C9—C14 1.3990 (14)
C2—H2B 0.99 C10—C11 1.3870 (14)
C3—C4 1.5219 (18) C10—H10 0.95
C3—H3A 0.99 C11—C12 1.3877 (14)
C3—H3B 0.99 C11—H11 0.95
C4—C5 1.5353 (15) C12—C13 1.3838 (14)
C4—H4A 0.99 C12—N2 1.4694 (13)
C4—H4B 0.99 C13—C14 1.3848 (15)
C5—C6 1.5060 (13) C13—H13 0.95
C5—H5A 0.99 C14—H14 0.95
C5—H5B 0.99 N1—H1 0.897 (16)
C6—N1 1.3306 (13) N2—O2 1.2253 (12)
C6—C7 1.3927 (14) N2—O3 1.2300 (12)
N1—C1—C2 114.74 (9) C7—C6—C5 119.10 (9)
N1—C1—H1A 108.6 C6—C7—C8 123.35 (9)
C2—C1—H1A 108.6 C6—C7—H7 118.3
N1—C1—H1B 108.6 C8—C7—H7 118.3
C2—C1—H1B 108.6 O1—C8—C7 124.12 (9)
H1A—C1—H1B 107.6 O1—C8—C9 118.04 (9)
C1—C2—C3 115.04 (9) C7—C8—C9 117.72 (9)
C1—C2—H2A 108.5 C10—C9—C14 119.09 (9)
C3—C2—H2A 108.5 C10—C9—C8 122.91 (9)
C1—C2—H2B 108.5 C14—C9—C8 117.99 (9)
C3—C2—H2B 108.5 C11—C10—C9 120.69 (9)
H2A—C2—H2B 107.5 C11—C10—H10 119.7
C4—C3—C2 115.06 (10) C9—C10—H10 119.7
C4—C3—H3A 108.5 C10—C11—C12 118.47 (9)
C2—C3—H3A 108.5 C10—C11—H11 120.8
C4—C3—H3B 108.5 C12—C11—H11 120.8
C2—C3—H3B 108.5 C13—C12—C11 122.46 (9)
H3A—C3—H3B 107.5 C13—C12—N2 118.91 (9)
C3—C4—C5 113.73 (9) C11—C12—N2 118.60 (9)
C3—C4—H4A 108.8 C12—C13—C14 118.20 (9)
C5—C4—H4A 108.8 C12—C13—H13 120.9
C3—C4—H4B 108.8 C14—C13—H13 120.9
C5—C4—H4B 108.8 C13—C14—C9 121.06 (9)
H4A—C4—H4B 107.7 C13—C14—H14 119.5
C6—C5—C4 113.97 (9) C9—C14—H14 119.5
C6—C5—H5A 108.8 C6—N1—C1 126.07 (9)
C4—C5—H5A 108.8 C6—N1—H1 115.6 (9)
C6—C5—H5B 108.8 C1—N1—H1 118.0 (9)
C4—C5—H5B 108.8 O2—N2—O3 123.31 (9)
H5A—C5—H5B 107.7 O2—N2—C12 118.66 (9)
N1—C6—C7 122.38 (9) O3—N2—C12 118.02 (9)
N1—C6—C5 118.52 (9)
N1—C1—C2—C3 −73.34 (13) C9—C10—C11—C12 1.08 (16)
C1—C2—C3—C4 58.23 (14) C10—C11—C12—C13 0.29 (16)
C2—C3—C4—C5 −64.07 (13) C10—C11—C12—N2 178.33 (9)
C3—C4—C5—C6 82.62 (12) C11—C12—C13—C14 −0.94 (16)
C4—C5—C6—N1 −60.10 (13) N2—C12—C13—C14 −178.98 (9)
C4—C5—C6—C7 120.49 (11) C12—C13—C14—C9 0.24 (16)
N1—C6—C7—C8 −6.73 (16) C10—C9—C14—C13 1.07 (16)
C5—C6—C7—C8 172.66 (10) C8—C9—C14—C13 −177.89 (9)
C6—C7—C8—O1 8.38 (17) C7—C6—N1—C1 170.95 (10)
C6—C7—C8—C9 −167.41 (9) C5—C6—N1—C1 −8.44 (15)
O1—C8—C9—C10 157.98 (10) C2—C1—N1—C6 68.52 (14)
C7—C8—C9—C10 −25.96 (14) C13—C12—N2—O2 −166.71 (9)
O1—C8—C9—C14 −23.10 (14) C11—C12—N2—O2 15.17 (14)
C7—C8—C9—C14 152.95 (10) C13—C12—N2—O3 13.97 (14)
C14—C9—C10—C11 −1.74 (16) C11—C12—N2—O3 −164.14 (9)
C8—C9—C10—C11 177.16 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.897 (16) 1.998 (15) 2.7041 (11) 134.6 (13)
N1—H1···O1i 0.897 (16) 2.392 (15) 3.0303 (12) 128.2 (12)

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5129).

References

  1. Balderson, J. L., Fernandes, M. A., Michael, J. P. & Perry, C. B. (2007). Acta Cryst. C63, o734–o738. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Michael, J. P., de Koning, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979–988.
  9. Paulvannan, K. & Stille, J. R. (1994). J. Org. Chem. 59, 1613–1620.
  10. Roth, M., Dubs, P., Götschi, E. & Eschenmoser, A. (1971). Helv. Chim. Acta, 54, 710–734.
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032035/tk5129sup1.cif

e-68-o2479-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032035/tk5129Isup2.hkl

e-68-o2479-Isup2.hkl (146.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032035/tk5129Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES