Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 18;68(Pt 8):o2486. doi: 10.1107/S1600536812031984

4-[(4-Chloro­phen­yl)(phen­yl)­meth­yl]­piperazin-1-ium picrate monohydrate

Yanxi Song a, C S Chidan Kumar b, S Chandraju c, S Naveen d, Hongqi Li e,*
PMCID: PMC3414941  PMID: 22904928

Abstract

The asymmetric unit of the title compound, C17H20ClN2 +·C6H2N3O7 ·H2O, contains a piperazin-1-ium cation, a picrate anion and one solvent water mol­ecule. The piperazene ring is protonated at one N atom and adopts a highly distorted chair conformation with the chloro­pheny(phen­yl)methyl substituent on the second N atom in an equatorial position. The crystal structure is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature  

For the biological activity of 1-benzyl­piperazine, see: Campbell et al. (1973). For related structures, see: Jasinski et al. (2011); Song et al. (2012). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-o2486-scheme1.jpg

Experimental  

Crystal data  

  • C17H20ClN2 +·C6H2N3O7 ·H2O

  • M r = 533.92

  • Monoclinic, Inline graphic

  • a = 21.144 (2) Å

  • b = 8.2997 (8) Å

  • c = 28.528 (3) Å

  • β = 93.029 (1)°

  • V = 4999.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.07 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.949, T max = 0.985

  • 12567 measured reflections

  • 4417 independent reflections

  • 2996 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.175

  • S = 1.04

  • 4417 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031984/sj5246sup1.cif

e-68-o2486-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031984/sj5246Isup2.hkl

e-68-o2486-Isup2.hkl (216.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031984/sj5246Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1W i 0.90 2.03 2.850 (4) 151
N2—H2B⋯O1ii 0.90 1.96 2.819 (3) 160
N2—H2B⋯O2ii 0.90 2.42 3.017 (4) 124
O1W—H1WA⋯O1 0.85 1.97 2.805 (3) 168
C16—H16B⋯O5iii 0.97 2.34 3.166 (4) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported in part by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research. YS and HL acknowledge financial support by the Fundamental Research Funds for the Central Universities.

supplementary crystallographic information

Comment

1-Benzylpiperazine was originally synthesized as a potential anthelmintic (Campbell et al., 1973) and its derivatives were found to possess excellent pharmacological activities. These include vasodilator, hypotensive and antiviral activity, the ability to increase cerebral blood flow and broad pharmacological action on central nervous system. In the course of our studies on the salts of piperazines (Jasinski et al., 2011; Song et al., 2012) and in view of the importance of piperazines, the paper reports the crystal and molecular structure of the title piperazin-1-ium salt.

The molecular structure and atom numbering scheme of the title compound are shown in Fig 1. In the title compound, the piperazine group is protonated at the N2 atom and adopts a highly distorted chair conformation with puckering parameters Q, θ and φ having values of 0.595 (3) °, 6.4 (3) ° and 342 (3) °, respectively. For an ideal chair conformation, θ has a value of 0 or 180°. The bond lengths (Allen et al., 1987) and bond angles are in good agreement with standard values. The crystal structure is stabilized by intermolecular O–H···O, N–H···O and C–H···O hydrogen bonds.

Experimental

1-((4-Chlorophenyl)(phenyl)methyl)piperazine (2.88 g, 0.01 mol) and picric acid (2.99 g, 0.01 mol) were dissolved separately in methanol. Both the solutions were mixed together and stirred for a few minutes at room temperature. The precipitate was collected by filtration and purified by recrystallization from methanol. On recrystallization with DMF after 15 days, good quality single crystals were obtained by the slow evaporation method. (M.P.: 441–445 K).

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.92–0.98 Å and N—H = 0.86 Å; Uiso(H) values were set equal to 1.2Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Crystal data

C17H20ClN2+·C6H2N3O7·H2O F(000) = 2224
Mr = 533.92 Dx = 1.419 Mg m3
Monoclinic, C2/c Melting point = 441–445 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 21.144 (2) Å Cell parameters from 2514 reflections
b = 8.2997 (8) Å θ = 2.3–21.0°
c = 28.528 (3) Å µ = 0.21 mm1
β = 93.029 (1)° T = 296 K
V = 4999.3 (8) Å3 Block, yellow
Z = 8 0.25 × 0.22 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 4417 independent reflections
Radiation source: fine-focus sealed tube 2996 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −25→20
Tmin = 0.949, Tmax = 0.985 k = −9→8
12567 measured reflections l = −31→33

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0837P)2 + 4.3115P] where P = (Fo2 + 2Fc2)/3
4417 reflections (Δ/σ)max < 0.001
334 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4904 (2) 0.8333 (6) 0.18443 (11) 0.0783 (11)
C2 0.5527 (2) 0.8799 (4) 0.19014 (11) 0.0737 (10)
H2 0.5633 0.9873 0.1955 0.088*
C3 0.59944 (16) 0.7637 (4) 0.18770 (10) 0.0606 (8)
H3 0.6418 0.7938 0.1915 0.073*
C4 0.58414 (13) 0.6039 (4) 0.17965 (9) 0.0490 (7)
C5 0.52105 (16) 0.5623 (5) 0.17391 (12) 0.0700 (9)
H5 0.5100 0.4553 0.1682 0.084*
C6 0.47386 (18) 0.6774 (7) 0.17651 (14) 0.0917 (13)
H6 0.4314 0.6481 0.1729 0.110*
C7 0.63529 (13) 0.4768 (3) 0.17948 (9) 0.0471 (7)
H7 0.6158 0.3740 0.1699 0.057*
C8 0.66452 (14) 0.4592 (3) 0.22959 (9) 0.0472 (7)
C9 0.63449 (16) 0.3611 (4) 0.26056 (10) 0.0609 (8)
H9 0.5991 0.3016 0.2503 0.073*
C10 0.65702 (19) 0.3512 (4) 0.30690 (11) 0.0749 (10)
H10 0.6356 0.2884 0.3279 0.090*
C11 0.7106 (2) 0.4329 (4) 0.32234 (11) 0.0766 (11)
H11 0.7259 0.4240 0.3534 0.092*
C12 0.74098 (18) 0.5272 (4) 0.29149 (11) 0.0683 (9)
H12 0.7776 0.5820 0.3015 0.082*
C13 0.71784 (15) 0.5421 (3) 0.24554 (10) 0.0572 (8)
H13 0.7385 0.6089 0.2251 0.069*
C14 0.65583 (14) 0.5363 (4) 0.09816 (9) 0.0526 (7)
H14A 0.6220 0.6154 0.0980 0.063*
H14B 0.6379 0.4345 0.0874 0.063*
C15 0.70566 (15) 0.5901 (4) 0.06551 (10) 0.0569 (8)
H15A 0.6869 0.5989 0.0338 0.068*
H15B 0.7213 0.6956 0.0750 0.068*
C16 0.78429 (15) 0.4460 (4) 0.11470 (10) 0.0624 (8)
H16A 0.8031 0.5443 0.1274 0.075*
H16B 0.8170 0.3640 0.1148 0.075*
C17 0.73229 (14) 0.3923 (4) 0.14476 (10) 0.0535 (7)
H17A 0.7135 0.2937 0.1321 0.064*
H17B 0.7495 0.3703 0.1763 0.064*
C18 0.89491 (14) 0.6145 (3) 0.98892 (9) 0.0476 (7)
C19 0.92823 (13) 0.7277 (3) 1.01969 (9) 0.0458 (6)
C20 0.98723 (13) 0.7849 (3) 1.01257 (9) 0.0478 (7)
H20 1.0065 0.8563 1.0340 0.057*
C21 1.01856 (13) 0.7372 (3) 0.97362 (9) 0.0463 (6)
C22 0.98998 (13) 0.6302 (3) 0.94120 (9) 0.0473 (7)
H22 1.0111 0.5966 0.9151 0.057*
C23 0.93097 (14) 0.5763 (3) 0.94855 (8) 0.0456 (6)
Cl1 0.43227 (7) 0.9810 (2) 0.18712 (4) 0.1402 (6)
N1 0.68382 (10) 0.5177 (2) 0.14618 (7) 0.0434 (5)
N2 0.75908 (12) 0.4746 (3) 0.06606 (8) 0.0579 (7)
H2A 0.7458 0.3808 0.0531 0.069*
H2B 0.7900 0.5140 0.0488 0.069*
N3 0.89901 (14) 0.7854 (3) 1.06134 (9) 0.0658 (7)
N4 1.08105 (12) 0.7960 (3) 0.96648 (9) 0.0631 (7)
N5 0.90198 (15) 0.4691 (3) 0.91305 (9) 0.0638 (7)
O1 0.84301 (10) 0.5503 (3) 0.99573 (7) 0.0664 (6)
O2 0.84210 (16) 0.7700 (4) 1.06424 (12) 0.1309 (14)
O3 0.92957 (14) 0.8649 (4) 1.08951 (9) 0.1129 (11)
O4 1.10570 (11) 0.8886 (3) 0.99550 (9) 0.0830 (7)
O5 1.10730 (11) 0.7526 (4) 0.93145 (9) 0.0903 (8)
O6 0.93478 (15) 0.3624 (3) 0.89779 (9) 0.0927 (9)
O7 0.84749 (14) 0.4966 (4) 0.89915 (9) 0.0922 (9)
O1W 0.74452 (12) 0.3604 (3) 0.95584 (11) 0.0996 (9)
H1WA 0.7756 0.4210 0.9638 0.100*
H1WB 0.7219 0.4009 0.9333 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.076 (3) 0.113 (3) 0.0465 (18) 0.037 (2) 0.0071 (17) 0.008 (2)
C2 0.104 (3) 0.069 (2) 0.0476 (18) 0.020 (2) 0.0063 (18) −0.0020 (16)
C3 0.063 (2) 0.066 (2) 0.0534 (17) 0.0055 (16) 0.0062 (14) −0.0042 (15)
C4 0.0517 (17) 0.0633 (19) 0.0323 (13) −0.0009 (14) 0.0060 (11) 0.0012 (12)
C5 0.057 (2) 0.086 (2) 0.066 (2) −0.0055 (18) −0.0042 (16) 0.0045 (18)
C6 0.053 (2) 0.139 (4) 0.083 (3) 0.013 (2) −0.0016 (19) 0.021 (3)
C7 0.0550 (17) 0.0479 (16) 0.0390 (14) −0.0083 (13) 0.0066 (12) −0.0017 (12)
C8 0.0609 (18) 0.0451 (15) 0.0362 (14) 0.0050 (13) 0.0099 (12) 0.0016 (12)
C9 0.070 (2) 0.0621 (19) 0.0514 (17) −0.0011 (16) 0.0138 (15) 0.0072 (15)
C10 0.102 (3) 0.078 (2) 0.0464 (18) 0.010 (2) 0.0210 (18) 0.0172 (17)
C11 0.114 (3) 0.074 (2) 0.0407 (17) 0.022 (2) −0.0060 (18) −0.0037 (17)
C12 0.092 (3) 0.059 (2) 0.0517 (19) 0.0035 (18) −0.0103 (17) −0.0110 (16)
C13 0.076 (2) 0.0493 (17) 0.0459 (16) −0.0060 (15) 0.0015 (14) 0.0000 (13)
C14 0.0597 (18) 0.0622 (18) 0.0360 (14) −0.0025 (14) 0.0050 (12) 0.0029 (13)
C15 0.068 (2) 0.0625 (19) 0.0413 (15) −0.0056 (15) 0.0105 (13) 0.0058 (13)
C16 0.0562 (19) 0.077 (2) 0.0551 (18) 0.0061 (16) 0.0105 (14) −0.0074 (16)
C17 0.0615 (18) 0.0558 (17) 0.0437 (15) 0.0042 (14) 0.0074 (13) −0.0004 (13)
C18 0.0596 (18) 0.0456 (15) 0.0377 (14) −0.0050 (13) 0.0036 (12) 0.0050 (12)
C19 0.0569 (18) 0.0463 (15) 0.0349 (13) −0.0004 (13) 0.0105 (12) −0.0017 (11)
C20 0.0556 (18) 0.0469 (15) 0.0407 (14) 0.0011 (13) 0.0000 (12) −0.0056 (12)
C21 0.0450 (16) 0.0524 (16) 0.0416 (14) 0.0024 (12) 0.0037 (12) −0.0032 (12)
C22 0.0587 (18) 0.0481 (16) 0.0357 (14) 0.0051 (13) 0.0066 (12) 0.0004 (12)
C23 0.0615 (18) 0.0420 (15) 0.0332 (13) −0.0034 (13) 0.0002 (12) −0.0011 (11)
Cl1 0.1339 (11) 0.1911 (15) 0.0945 (9) 0.1027 (11) −0.0038 (7) 0.0031 (8)
N1 0.0497 (13) 0.0483 (13) 0.0329 (11) 0.0007 (10) 0.0079 (9) 0.0009 (9)
N2 0.0628 (16) 0.0653 (16) 0.0474 (14) −0.0124 (13) 0.0204 (11) −0.0090 (12)
N3 0.073 (2) 0.0739 (18) 0.0525 (15) −0.0172 (15) 0.0207 (14) −0.0167 (13)
N4 0.0517 (16) 0.0783 (18) 0.0599 (16) −0.0023 (13) 0.0082 (13) −0.0124 (14)
N5 0.083 (2) 0.0657 (18) 0.0430 (14) −0.0191 (16) 0.0051 (14) −0.0043 (13)
O1 0.0707 (15) 0.0780 (15) 0.0518 (12) −0.0294 (12) 0.0165 (10) −0.0060 (10)
O2 0.110 (2) 0.157 (3) 0.134 (3) −0.068 (2) 0.080 (2) −0.084 (2)
O3 0.096 (2) 0.176 (3) 0.0682 (16) −0.019 (2) 0.0176 (14) −0.0608 (19)
O4 0.0640 (15) 0.1024 (19) 0.0827 (16) −0.0237 (14) 0.0053 (12) −0.0275 (15)
O5 0.0620 (15) 0.131 (2) 0.0809 (17) −0.0089 (15) 0.0277 (13) −0.0341 (16)
O6 0.142 (3) 0.0651 (15) 0.0704 (16) −0.0023 (16) 0.0001 (16) −0.0268 (13)
O7 0.0768 (18) 0.135 (2) 0.0642 (16) −0.0288 (17) −0.0021 (13) −0.0199 (15)
O1W 0.0735 (17) 0.0920 (19) 0.133 (2) −0.0152 (14) 0.0024 (16) −0.0241 (17)

Geometric parameters (Å, º)

C1—C6 1.356 (6) C15—H15B 0.9700
C1—C2 1.376 (5) C16—N2 1.479 (4)
C1—Cl1 1.740 (4) C16—C17 1.497 (4)
C2—C3 1.384 (5) C16—H16A 0.9700
C2—H2 0.9300 C16—H16B 0.9700
C3—C4 1.382 (4) C17—N1 1.463 (3)
C3—H3 0.9300 C17—H17A 0.9700
C4—C5 1.379 (4) C17—H17B 0.9700
C4—C7 1.511 (4) C18—O1 1.244 (3)
C5—C6 1.386 (5) C18—C19 1.444 (4)
C5—H5 0.9300 C18—C23 1.449 (4)
C6—H6 0.9300 C19—C20 1.360 (4)
C7—N1 1.474 (3) C19—N3 1.449 (4)
C7—C8 1.534 (4) C20—C21 1.381 (4)
C7—H7 0.9800 C20—H20 0.9300
C8—C13 1.378 (4) C21—C22 1.397 (4)
C8—C9 1.381 (4) C21—N4 1.433 (4)
C9—C10 1.384 (4) C22—C23 1.352 (4)
C9—H9 0.9300 C22—H22 0.9300
C10—C11 1.372 (5) C23—N5 1.459 (4)
C10—H10 0.9300 N2—H2A 0.9000
C11—C12 1.364 (5) N2—H2B 0.9000
C11—H11 0.9300 N3—O3 1.202 (3)
C12—C13 1.380 (4) N3—O2 1.217 (4)
C12—H12 0.9300 N4—O5 1.223 (3)
C13—H13 0.9300 N4—O4 1.226 (3)
C14—N1 1.471 (3) N5—O6 1.219 (4)
C14—C15 1.510 (4) N5—O7 1.220 (4)
C14—H14A 0.9700 O1W—H1WA 0.8501
C14—H14B 0.9700 O1W—H1WA 0.8501
C15—N2 1.481 (4) O1W—H1WB 0.8502
C15—H15A 0.9700
C6—C1—C2 121.6 (3) H15A—C15—H15B 108.0
C6—C1—Cl1 120.2 (4) N2—C16—C17 110.2 (2)
C2—C1—Cl1 118.2 (4) N2—C16—H16A 109.6
C1—C2—C3 118.7 (4) C17—C16—H16A 109.6
C1—C2—H2 120.6 N2—C16—H16B 109.6
C3—C2—H2 120.6 C17—C16—H16B 109.6
C4—C3—C2 121.0 (3) H16A—C16—H16B 108.1
C4—C3—H3 119.5 N1—C17—C16 109.9 (2)
C2—C3—H3 119.5 N1—C17—H17A 109.7
C5—C4—C3 118.5 (3) C16—C17—H17A 109.7
C5—C4—C7 120.9 (3) N1—C17—H17B 109.7
C3—C4—C7 120.6 (3) C16—C17—H17B 109.7
C4—C5—C6 121.0 (4) H17A—C17—H17B 108.2
C4—C5—H5 119.5 O1—C18—C19 126.1 (3)
C6—C5—H5 119.5 O1—C18—C23 122.4 (2)
C1—C6—C5 119.2 (4) C19—C18—C23 111.4 (2)
C1—C6—H6 120.4 C20—C19—C18 123.9 (2)
C5—C6—H6 120.4 C20—C19—N3 116.2 (2)
N1—C7—C4 111.4 (2) C18—C19—N3 119.9 (3)
N1—C7—C8 111.3 (2) C19—C20—C21 120.2 (2)
C4—C7—C8 108.5 (2) C19—C20—H20 119.9
N1—C7—H7 108.6 C21—C20—H20 119.9
C4—C7—H7 108.6 C20—C21—C22 120.4 (3)
C8—C7—H7 108.6 C20—C21—N4 120.1 (2)
C13—C8—C9 118.6 (3) C22—C21—N4 119.5 (2)
C13—C8—C7 122.8 (2) C23—C22—C21 118.6 (2)
C9—C8—C7 118.5 (3) C23—C22—H22 120.7
C8—C9—C10 120.0 (3) C21—C22—H22 120.7
C8—C9—H9 120.0 C22—C23—C18 125.4 (2)
C10—C9—H9 120.0 C22—C23—N5 116.8 (2)
C11—C10—C9 120.9 (3) C18—C23—N5 117.7 (3)
C11—C10—H10 119.5 C17—N1—C14 107.3 (2)
C9—C10—H10 119.5 C17—N1—C7 111.5 (2)
C12—C11—C10 119.1 (3) C14—N1—C7 111.4 (2)
C12—C11—H11 120.5 C16—N2—C15 110.5 (2)
C10—C11—H11 120.5 C16—N2—H2A 109.5
C11—C12—C13 120.6 (3) C15—N2—H2A 109.5
C11—C12—H12 119.7 C16—N2—H2B 109.5
C13—C12—H12 119.7 C15—N2—H2B 109.5
C8—C13—C12 120.8 (3) H2A—N2—H2B 108.1
C8—C13—H13 119.6 O3—N3—O2 120.7 (3)
C12—C13—H13 119.6 O3—N3—C19 119.5 (3)
N1—C14—C15 110.2 (2) O2—N3—C19 119.1 (3)
N1—C14—H14A 109.6 O5—N4—O4 122.8 (3)
C15—C14—H14A 109.6 O5—N4—C21 118.5 (3)
N1—C14—H14B 109.6 O4—N4—C21 118.7 (2)
C15—C14—H14B 109.6 O6—N5—O7 124.4 (3)
H14A—C14—H14B 108.1 O6—N5—C23 117.7 (3)
N2—C15—C14 111.0 (2) O7—N5—C23 117.8 (3)
N2—C15—H15A 109.4 H1WA—O1W—H1WA 0.0
C14—C15—H15A 109.4 H1WA—O1W—H1WB 111.4
N2—C15—H15B 109.4 H1WA—O1W—H1WB 111.4
C14—C15—H15B 109.4

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1Wi 0.90 2.03 2.850 (4) 151
N2—H2B···O1ii 0.90 1.96 2.819 (3) 160
N2—H2B···O2ii 0.90 2.42 3.017 (4) 124
O1W—H1WA···O1 0.85 1.97 2.805 (3) 168
C16—H16B···O5iii 0.97 2.34 3.166 (4) 143

Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) x, y, z−1; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5246).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Campbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). Eur. J. Clin. Pharmacol. 6, 170–176. [DOI] [PubMed]
  4. Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031984/sj5246sup1.cif

e-68-o2486-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031984/sj5246Isup2.hkl

e-68-o2486-Isup2.hkl (216.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031984/sj5246Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES