Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 18;68(Pt 8):o2489. doi: 10.1107/S1600536812030498

N-[(E)-Thio­phen-2-yl­methyl­idene]-1,3-benzothia­zol-2-amine

Irvin N Booysen a, Muhammed B Ismail a, Matthew P Akerman a,*
PMCID: PMC3414944  PMID: 22904931

Abstract

In the title thio­phene-derived Schiff base compound, C12H8N2S2, the thio­phene ring is slighty rotated from the benzothia­zole group mean plane, giving a dihedral angle of 12.87 (6)°. The largest displacement of an atom in the mol­ecule from the nine-atom mean plane defined by the non-H atoms of the benzothia­zole ring system is 0.572 (1) Å, exhibited by the C atom at the 3-position of the thio­phene ring. In the crystal, weak C—H⋯S hydrogen bonds involving the thio­phene group S atom and the 4-position thio­phene C—H group of a symmetry-related mol­ecule lead to an infinite one-dimensional chain colinear with the c axis. The structure is further stabilized by π–π inter­actions; the distance between the thia­zole ring centroid and the centroid of an adjacent benzene ring is 3.686 (1) Å. The crystal studied was an inversion twin with the ratio of components 0.73 (3):0.27 (3).

Related literature  

For the synthesis and crystal structure of 2-amino­benzothia­zole, see: Ding et al. (2009). For crystal structures containing 2-amino­benzothia­zole derivatives, see: Garcia-Hernandez et al. (2006). For inhibitory properties against human cancer cell lines and general anti­tumor properties of benzothia­zole derivatives, see: Racane et al. (2001); O’Brien et al. (2003). For anti­bacterial, anti­fungal, anti­tumor and anti­viral activites of benzthia­zoles, see: Yadav & Malipatil (2011); Singh & Seghal (1988); Pattan et al. (2005).graphic file with name e-68-o2489-scheme1.jpg

Experimental  

Crystal data  

  • C12H8N2S2

  • M r = 244.32

  • Monoclinic, Inline graphic

  • a = 10.7244 (5) Å

  • b = 4.6021 (2) Å

  • c = 11.1280 (5) Å

  • β = 100.367 (2)°

  • V = 540.25 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 100 K

  • 0.45 × 0.20 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.625, T max = 0.749

  • 14476 measured reflections

  • 7768 independent reflections

  • 7126 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.085

  • S = 1.04

  • 7768 reflections

  • 145 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 2974 Friedel pairs

  • Flack parameter: 0.27 (3)

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812030498/lh5495sup1.cif

e-68-o2489-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030498/lh5495Isup2.hkl

e-68-o2489-Isup2.hkl (372.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030498/lh5495Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S2i 0.95 2.92 3.517 (1) 122 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the University of KwaZulu-Natal and the National Research Foundation of South Africa for funding.

supplementary crystallographic information

Comment

Benzothiazoles are naturally occurring molecules which consist of a 5-membered 1,3-thiazole ring fused to a benzene ring. Their derivatives are abundantly distributed in nature and have been shown to have very interesting pharmacological activity, particularly antibacterial, antifungal, antitumor and antiviral properties (Yadav & Malipatil, 2011; Singh & Seghal, 1988; Pattan et al., 2005). The heterocyclic scaffold is readily substituted at the 2-position of the thiazole ring, allowing for derivatization.

The thiophene ring of the title compound (I) is not in the same plane as the 1,3-benzothiazole moiety, with a dihedral angle of 13.6 (1)° relative to the benzthiazole ring. This out-of-plane rotation of the thiophene results in the carbon atom in the 3-position of the thiophene ring (C10) sitting 0.572 (1) Å from the 9-atom mean plane defined by all non-hydrogen atoms of the benzthiazole ring system. The C8—N2 bond distance of 1.290 (1) Å and the C7—N2—C8 bond angle of 118.12 (7)° emphasize the sp2 hybridization of the imino nitrogen atom (refer to Figure 1 for the atom numbering scheme). An (E)-configuration about the imine bond is observed for this Schiff base moiety.

The structure exhibits both hydrogen bonding and π···π interactions. The distance between the centroid of the benzene ring and the centroid of the thiazole ring of an adjacent molecule is 3.686 (1) Å. In addition to the π···π interactions there are non-classical hydrogen bonds between the thiophene sulfur atom, S2, and the thiophene hydrogen atom H11 of an adjacent molecule. This hydrogen bond links the molecules into infinite, one-dimensional hydrogen-bonded chains, which are co-linear with the c-axis. The adjacent, hydrogen-bonded molecules are not both in the same plane, the 24-atom mean planes of two adjacent molecules make an angle of 75.9 (1)° to each other. Although the hydrogen bonds are not likely very strong as they are only marginally shorter than the sum of the van der Waals radii (0.066 Å), these intermolecular interactions can stabilize the lattice.

Experimental

A mixture of 2-aminobenzothiazole (1.27 g; 8.45 mmol) and thiophene-2-carbaldehyde (0.92 ml; 10.2 mmol) in methanol (50 ml) was heated to reflux for 24 h. The resulting orange solution was allowed to cool to room temperature and concentrated by rotary evaporation under reduced pressure. Dry toluene (45 ml) was added to the solution and heated to reflux with a Dean and Stark apparatus for an additional 24 h. Upon cooling the title compound was isolated as brown, needle-shaped crystals.

Refinement

The positions of all C-bonded hydrogen atoms were calculated using the standard riding model of SHELXL97 (Sheldrick, 2008) with C—H(aromatic) distances of 0.93 Å and Uiso = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A thermal ellipsoid plot of (I). Ellipsoids are rendered at the 50% probability level.

Fig. 2.

Fig. 2.

The one-dimensional, hydrogen-bonded chains of (I). Viewed along the a-axis. Hydrogen bonds are shown as dotted lines.

Crystal data

C12H8N2S2 F(000) = 252
Mr = 244.32 Dx = 1.502 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 7126 reflections
a = 10.7244 (5) Å θ = 1.9–46.7°
b = 4.6021 (2) Å µ = 0.46 mm1
c = 11.1280 (5) Å T = 100 K
β = 100.367 (2)° Neelde, yellow
V = 540.25 (4) Å3 0.45 × 0.20 × 0.12 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 7768 independent reflections
Radiation source: fine-focus sealed tube 7126 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 46.7°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2010) h = −21→21
Tmin = 0.625, Tmax = 0.749 k = −9→9
14476 measured reflections l = −21→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.0113P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
7768 reflections Δρmax = 0.62 e Å3
145 parameters Δρmin = −0.36 e Å3
2 restraints Absolute structure: Flack (1983), 2974 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.27 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.784499 (18) 0.45575 (5) 0.332022 (16) 0.01350 (4)
S2 0.443816 (19) −0.29395 (6) 0.120085 (18) 0.01726 (4)
N1 0.84951 (6) 0.36879 (17) 0.11966 (6) 0.01280 (9)
N2 0.66346 (7) 0.11200 (17) 0.15758 (6) 0.01375 (10)
C4 1.11614 (8) 0.8815 (2) 0.21064 (8) 0.01636 (12)
H4 1.1852 0.9670 0.1808 0.020*
C5 1.03822 (8) 0.68618 (19) 0.13798 (7) 0.01428 (11)
H5 1.0537 0.6364 0.0591 0.017*
C6 0.93578 (7) 0.56279 (17) 0.18281 (7) 0.01178 (10)
C7 0.76580 (7) 0.29951 (17) 0.18671 (7) 0.01226 (10)
C8 0.63195 (8) 0.02760 (18) 0.04564 (7) 0.01376 (11)
H8 0.6783 0.0935 −0.0142 0.017*
C9 0.52640 (7) −0.16652 (18) 0.01185 (7) 0.01283 (10)
C10 0.47648 (8) −0.2709 (2) −0.10331 (8) 0.01632 (12)
H10 0.5091 −0.2242 −0.1749 0.020*
C11 0.37091 (9) −0.4557 (2) −0.10202 (9) 0.01923 (14)
H11 0.3248 −0.5476 −0.1727 0.023*
C3 1.09458 (8) 0.9554 (2) 0.32807 (9) 0.01656 (12)
H3 1.1494 1.0901 0.3761 0.020*
C2 0.99466 (8) 0.83477 (19) 0.37474 (7) 0.01491 (11)
H2 0.9803 0.8841 0.4540 0.018*
C1 0.91594 (7) 0.63843 (17) 0.30119 (7) 0.01210 (10)
C12 0.34282 (9) −0.4870 (2) 0.01255 (10) 0.01891 (14)
H12 0.2750 −0.6026 0.0303 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01409 (7) 0.01617 (8) 0.01111 (6) −0.00243 (6) 0.00462 (5) −0.00251 (6)
S2 0.01686 (8) 0.02164 (9) 0.01432 (7) −0.00281 (7) 0.00559 (6) 0.00148 (6)
N1 0.0128 (2) 0.0148 (2) 0.0111 (2) −0.00094 (18) 0.00313 (16) −0.00076 (18)
N2 0.0137 (2) 0.0151 (3) 0.0127 (2) −0.00233 (19) 0.00298 (17) −0.00149 (18)
C4 0.0137 (3) 0.0163 (3) 0.0195 (3) −0.0015 (2) 0.0040 (2) 0.0025 (2)
C5 0.0129 (2) 0.0164 (3) 0.0143 (2) −0.0002 (2) 0.0044 (2) 0.0016 (2)
C6 0.0117 (2) 0.0121 (3) 0.0117 (2) 0.00034 (18) 0.00274 (18) 0.00046 (18)
C7 0.0132 (2) 0.0131 (3) 0.0107 (2) −0.0009 (2) 0.00263 (18) −0.00112 (19)
C8 0.0142 (3) 0.0150 (3) 0.0125 (2) −0.0025 (2) 0.0037 (2) −0.0016 (2)
C9 0.0126 (2) 0.0142 (3) 0.0122 (2) −0.0008 (2) 0.00370 (19) −0.00131 (19)
C10 0.0152 (3) 0.0208 (3) 0.0138 (3) −0.0033 (2) 0.0047 (2) −0.0044 (2)
C11 0.0140 (3) 0.0229 (4) 0.0211 (3) −0.0032 (3) 0.0041 (2) −0.0073 (3)
C3 0.0140 (3) 0.0156 (3) 0.0195 (3) −0.0028 (2) 0.0012 (2) −0.0005 (2)
C2 0.0147 (3) 0.0147 (3) 0.0151 (3) −0.0013 (2) 0.0020 (2) −0.0022 (2)
C1 0.0119 (2) 0.0123 (3) 0.0122 (2) −0.00014 (19) 0.00249 (18) −0.00036 (19)
C12 0.0143 (3) 0.0185 (3) 0.0249 (4) −0.0031 (2) 0.0062 (3) −0.0015 (3)

Geometric parameters (Å, º)

S1—C1 1.7279 (8) C6—C1 1.4152 (10)
S1—C7 1.7480 (7) C8—C9 1.4379 (11)
S2—C12 1.7111 (10) C8—H8 0.9500
S2—C9 1.7213 (8) C9—C10 1.3830 (11)
N1—C7 1.3058 (10) C10—C11 1.4183 (13)
N1—C6 1.3831 (10) C10—H10 0.9500
N2—C8 1.2904 (10) C11—C12 1.3694 (15)
N2—C7 1.3879 (10) C11—H11 0.9500
C4—C5 1.3844 (12) C3—C2 1.3880 (12)
C4—C3 1.4091 (13) C3—H3 0.9500
C4—H4 0.9500 C2—C1 1.3966 (11)
C5—C6 1.4055 (11) C2—H2 0.9500
C5—H5 0.9500 C12—H12 0.9500
C1—S1—C7 88.76 (4) C10—C9—S2 111.59 (6)
C12—S2—C9 91.61 (4) C8—C9—S2 120.57 (6)
C7—N1—C6 109.46 (6) C9—C10—C11 112.06 (8)
C8—N2—C7 118.12 (7) C9—C10—H10 124.0
C5—C4—C3 121.06 (8) C11—C10—H10 124.0
C5—C4—H4 119.5 C12—C11—C10 112.47 (8)
C3—C4—H4 119.5 C12—C11—H11 123.8
C4—C5—C6 118.89 (7) C10—C11—H11 123.8
C4—C5—H5 120.6 C2—C3—C4 121.13 (8)
C6—C5—H5 120.6 C2—C3—H3 119.4
N1—C6—C5 125.08 (7) C4—C3—H3 119.4
N1—C6—C1 115.64 (7) C3—C2—C1 117.74 (8)
C5—C6—C1 119.28 (7) C3—C2—H2 121.1
N1—C7—N2 127.91 (7) C1—C2—H2 121.1
N1—C7—S1 116.87 (6) C2—C1—C6 121.90 (7)
N2—C7—S1 115.22 (6) C2—C1—S1 128.84 (6)
N2—C8—C9 119.77 (7) C6—C1—S1 109.26 (6)
N2—C8—H8 120.1 C11—C12—S2 112.27 (7)
C9—C8—H8 120.1 C11—C12—H12 123.9
C10—C9—C8 127.83 (7) S2—C12—H12 123.9
C3—C4—C5—C6 0.46 (13) C8—C9—C10—C11 −179.24 (9)
C7—N1—C6—C5 −179.28 (8) S2—C9—C10—C11 −0.19 (11)
C7—N1—C6—C1 0.46 (10) C9—C10—C11—C12 0.20 (13)
C4—C5—C6—N1 178.98 (8) C5—C4—C3—C2 0.04 (14)
C4—C5—C6—C1 −0.76 (12) C4—C3—C2—C1 −0.22 (13)
C6—N1—C7—N2 179.97 (8) C3—C2—C1—C6 −0.10 (12)
C6—N1—C7—S1 −1.01 (9) C3—C2—C1—S1 −179.40 (7)
C8—N2—C7—N1 −12.23 (13) N1—C6—C1—C2 −179.17 (7)
C8—N2—C7—S1 168.73 (7) C5—C6—C1—C2 0.60 (12)
C1—S1—C7—N1 1.00 (7) N1—C6—C1—S1 0.26 (9)
C1—S1—C7—N2 −179.84 (6) C5—C6—C1—S1 −179.98 (6)
C7—N2—C8—C9 −179.96 (7) C7—S1—C1—C2 178.73 (8)
N2—C8—C9—C10 177.50 (9) C7—S1—C1—C6 −0.64 (6)
N2—C8—C9—S2 −1.47 (12) C10—C11—C12—S2 −0.12 (12)
C12—S2—C9—C10 0.10 (8) C9—S2—C12—C11 0.01 (8)
C12—S2—C9—C8 179.23 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···S2i 0.95 2.92 3.517 (1) 122 (1)

Symmetry code: (i) x, −y−1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5495).

References

  1. Bruker (2010). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ding, Q., He, X. & Wu, J. (2009). J. Comb. Chem. 11, 587–591. [DOI] [PubMed]
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Garcia-Hernandez, Z., Flores-Parra, A., Grevy, J. M., Ramos-Organillo, A. & Contreras, R. (2006). Polyhedron, 25, 1662–1672.
  6. O’Brien, S. E., Browne, H. L., Bradshaw, T. D., Westwell, A. D. & Stevens, M. F. (2003). Org. Biomol. Chem. 1, 493–497. [DOI] [PubMed]
  7. Pattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V., Rasal, V. P. & Kotti, B. C. (2005). Indian J. Chem. Sect. B, 4, 2404–2408.
  8. Racane, L., Tralic-Kulenovic, V., Fiser-Jakic, L. & Boykin, D. W. (2001). Heterocycles, 55, 2085–2089.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Singh, S. P. & Seghal, S. (1988). Indian J. Chem. 27, 941–945.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Yadav, S. K. & Malipatil, S. M. (2011). IJDDHR, 1, 42–43.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812030498/lh5495sup1.cif

e-68-o2489-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030498/lh5495Isup2.hkl

e-68-o2489-Isup2.hkl (372.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030498/lh5495Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES