Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 18;68(Pt 8):o2492. doi: 10.1107/S1600536812032357

3-(1H-1,3-Benzimidazol-2-yl)-2,7-dimeth­oxy­quinoline

Hayette Alliouche a, Sofiane Bouacida b,c,*, Thierry Roisnel d, Ali Belfaitah a
PMCID: PMC3414947  PMID: 22904934

Abstract

In the title mol­ecule, C18H15N3O2, the dihedral angle between the quinoline and benzimidazole ring systems is 23.57 (5)°. The C atoms of the meth­oxy groups are both close to being coplanar with their attached ring systems [deviations = 0.193 (2) and −0.020 (2) Å]. An intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into C(4) chains propagating in [010]. Weak C—H⋯π inter­actions also occur.

Related literature  

For our previous work on the preparation of functionalized heterocyclic compounds with potential biological activity, see: Benzerka et al. (2012); Hayour et al. (2011). For further synthetic details, see: Fioraventi et al. (2006).graphic file with name e-68-o2492-scheme1.jpg

Experimental  

Crystal data  

  • C18H15N3O2

  • M r = 305.33

  • Orthorhombic, Inline graphic

  • a = 6.7094 (2) Å

  • b = 9.4134 (3) Å

  • c = 49.1620 (16) Å

  • V = 3104.99 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.51 × 0.29 × 0.09 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.900, T max = 0.992

  • 14322 measured reflections

  • 3398 independent reflections

  • 2696 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.112

  • S = 1.03

  • 3398 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032357/hb6897sup1.cif

e-68-o2492-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032357/hb6897Isup2.hkl

e-68-o2492-Isup2.hkl (163.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032357/hb6897Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg4 are the centroids of the N16/N17/C15/C18/C23, N4/C3/C5/C12–C14 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16⋯N17i 0.88 2.02 2.8397 (17) 154
N16—H16⋯O2 0.88 2.27 2.7107 (17) 111
C1—H1ACg2ii 0.98 2.67 3.3101 (18) 123
C1—H1CCg1iii 0.98 2.82 3.4955 (17) 127
C20—H20⋯Cg4iv 0.95 2.99 3.8271 (18) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We are grateful to all personel of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

supplementary crystallographic information

Comment

In the course of our program related to the synthesis of new suitably functionalized heterocyclic compounds of potential biological activity, (Benzerka et al., 2012; Hayour et al., 2011), we now report herein the synthesis and structure determination of the title compound, C18H15N3O2. The reactivity of this compound and its analogues toward nucleophiles is under investigation.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the dimethoxyquinoline unit bearing an benzo imidazol moiety. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 2.68 (4)°. The heterocycle ring of quinolyl unit form also with imidazol plane a dihedral angle of 24.09 (5)°. The crystal packing can be described as layers in zig zag parallel to (010) plane, along the c axis (Fig. 2). It is stabilized by intra and intermolecular hydrogen bond (N—H···N and N—H···O) and C—H···π stacking, resulting in the formation of infinite three-dimensional network linked these layers toghter and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.

Experimental

In first, malononitrile (1.0 mmol) was condensed with 2,7-dimethoxyquinolin-3-carbaldehyde (1 mmol) to give the corresponding Knoevenagel product in 97% yield. The oxidation of this one, under mild conditions, with 2.5 eq. of m.CPBA proceeded cleany, to afford corresponding 2,2-dicyano-3-(2,7-dimethoxyquinolin-3-yl)oxirane in 64% yield, according to the method reported by Fioraventi et al. (2006) In the next step, a mixture of 1.0 mmol. of 3-(2,7-dimethoxyquinolin-3-yl)oxirane-2,2-dicarbonitrile and 1.0 eq. of o-phenylenediamine dissolved in 30 ml of anhydrous acetonitrile was refluxed during 20 h. The title compound was successfully isolated by silica gel column chromatography using n.hexane/EtOAc (3:2) mixture as eluent in good yield (62%). Colourless blocks were obtained by crystallization (slow evaporation at room temperature) from a dichloromethane/methanol solution.

Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom. (with C—H = 0.95 and 0.98 Å, N—H = 0.88 Å and Uiso(H) =1.5 or 1.2(carrier atom)).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [N—H···N and N—H···O] as dashed line.

Crystal data

C18H15N3O2 F(000) = 1280
Mr = 305.33 Dx = 1.306 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3402 reflections
a = 6.7094 (2) Å θ = 3.2–26.7°
b = 9.4134 (3) Å µ = 0.09 mm1
c = 49.1620 (16) Å T = 150 K
V = 3104.99 (17) Å3 Block, colourless
Z = 8 0.51 × 0.29 × 0.09 mm

Data collection

Bruker APEXII diffractometer 2696 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
CCD rotation images, thin slices scans θmax = 27.1°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −8→8
Tmin = 0.900, Tmax = 0.992 k = −12→11
14322 measured reflections l = −51→62
3398 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0451P)2 + 1.4136P] where P = (Fo2 + 2Fc2)/3
3398 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.2836 (2) 0.46202 (18) 0.63727 (4) 0.0326 (4)
H1A 1.272 0.4041 0.6208 0.049*
H1B 1.3178 0.4009 0.6527 0.049*
H1C 1.3884 0.5334 0.6347 0.049*
C3 1.0281 (2) 0.62110 (15) 0.62327 (3) 0.0232 (3)
C5 1.0569 (2) 0.73868 (16) 0.58254 (3) 0.0258 (3)
C6 1.1711 (3) 0.76468 (17) 0.55888 (3) 0.0301 (4)
H6 1.2896 0.7122 0.5555 0.036*
C7 1.1086 (3) 0.86695 (19) 0.54070 (3) 0.0329 (4)
C9 1.3846 (3) 0.8225 (2) 0.51100 (4) 0.0453 (5)
H9A 1.4838 0.8368 0.5254 0.068*
H9B 1.4391 0.855 0.4936 0.068*
H9C 1.3514 0.7213 0.5098 0.068*
C10 0.9307 (3) 0.94447 (19) 0.54508 (3) 0.0357 (4)
H10 0.8893 1.0141 0.5323 0.043*
C11 0.8182 (3) 0.91890 (18) 0.56783 (3) 0.0335 (4)
H11 0.6987 0.9709 0.5707 0.04*
C12 0.8784 (2) 0.81534 (16) 0.58716 (3) 0.0270 (3)
C13 0.7714 (2) 0.78642 (16) 0.61140 (3) 0.0264 (3)
H13 0.6494 0.8344 0.6149 0.032*
C14 0.8429 (2) 0.68943 (15) 0.62988 (3) 0.0231 (3)
C15 0.7363 (2) 0.66229 (15) 0.65547 (3) 0.0219 (3)
C18 0.5356 (2) 0.68915 (15) 0.68937 (3) 0.0239 (3)
C19 0.3995 (3) 0.73837 (17) 0.70884 (3) 0.0310 (4)
H19 0.3424 0.8305 0.7075 0.037*
C20 0.3513 (3) 0.64821 (18) 0.73003 (3) 0.0327 (4)
H20 0.259 0.6788 0.7435 0.039*
C21 0.4363 (3) 0.51183 (18) 0.73215 (3) 0.0307 (4)
H21 0.3998 0.4528 0.747 0.037*
C22 0.5711 (2) 0.46135 (16) 0.71324 (3) 0.0266 (3)
H22 0.6275 0.3691 0.7147 0.032*
C23 0.6202 (2) 0.55309 (15) 0.69194 (3) 0.0225 (3)
N4 1.12891 (19) 0.64018 (13) 0.60072 (3) 0.0254 (3)
N16 0.74790 (19) 0.53920 (13) 0.67005 (2) 0.0229 (3)
H16 0.8226 0.465 0.6662 0.027*
N17 0.6102 (2) 0.75567 (13) 0.66624 (3) 0.0253 (3)
O2 1.09768 (16) 0.53168 (11) 0.64249 (2) 0.0285 (3)
O8 1.2084 (2) 0.90194 (14) 0.51729 (2) 0.0424 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0285 (9) 0.0335 (9) 0.0357 (9) 0.0116 (7) 0.0000 (7) 0.0024 (7)
C3 0.0269 (8) 0.0181 (7) 0.0247 (8) −0.0009 (6) −0.0013 (7) −0.0007 (6)
C5 0.0301 (8) 0.0239 (7) 0.0234 (8) −0.0010 (6) −0.0007 (7) −0.0015 (6)
C6 0.0320 (8) 0.0325 (9) 0.0257 (8) 0.0016 (7) 0.0022 (7) −0.0016 (7)
C7 0.0396 (10) 0.0378 (9) 0.0213 (8) −0.0032 (8) 0.0024 (7) 0.0019 (7)
C9 0.0401 (10) 0.0612 (13) 0.0344 (10) 0.0042 (9) 0.0114 (9) 0.0084 (9)
C10 0.0455 (10) 0.0363 (9) 0.0254 (9) 0.0032 (8) −0.0019 (8) 0.0065 (7)
C11 0.0373 (9) 0.0348 (9) 0.0285 (9) 0.0071 (8) −0.0002 (8) 0.0043 (7)
C12 0.0322 (8) 0.0244 (8) 0.0245 (8) −0.0002 (7) −0.0010 (7) 0.0001 (6)
C13 0.0277 (8) 0.0229 (7) 0.0285 (8) 0.0029 (6) 0.0007 (7) −0.0006 (6)
C14 0.0250 (8) 0.0178 (7) 0.0265 (8) −0.0023 (6) 0.0016 (7) −0.0019 (6)
C15 0.0240 (7) 0.0170 (7) 0.0247 (7) −0.0018 (6) −0.0006 (6) −0.0001 (6)
C18 0.0260 (8) 0.0195 (7) 0.0261 (8) −0.0023 (6) 0.0019 (7) −0.0006 (6)
C19 0.0319 (9) 0.0262 (8) 0.0350 (9) 0.0014 (7) 0.0063 (8) −0.0037 (7)
C20 0.0313 (9) 0.0364 (9) 0.0303 (9) −0.0031 (7) 0.0085 (7) −0.0052 (7)
C21 0.0347 (9) 0.0325 (8) 0.0250 (8) −0.0091 (7) 0.0020 (7) 0.0002 (7)
C22 0.0297 (8) 0.0233 (7) 0.0269 (8) −0.0029 (6) −0.0022 (7) 0.0015 (6)
C23 0.0232 (7) 0.0204 (7) 0.0239 (8) −0.0036 (6) −0.0002 (6) −0.0024 (6)
N4 0.0271 (7) 0.0239 (6) 0.0251 (7) −0.0003 (5) 0.0009 (6) 0.0005 (5)
N16 0.0256 (6) 0.0184 (6) 0.0246 (7) 0.0026 (5) 0.0018 (6) 0.0011 (5)
N17 0.0273 (7) 0.0195 (6) 0.0291 (7) −0.0002 (5) 0.0049 (6) 0.0009 (5)
O2 0.0280 (6) 0.0260 (6) 0.0317 (6) 0.0061 (5) 0.0031 (5) 0.0067 (5)
O8 0.0475 (8) 0.0515 (8) 0.0282 (7) 0.0046 (6) 0.0086 (6) 0.0112 (6)

Geometric parameters (Å, º)

C1—O2 1.4327 (19) C11—H11 0.95
C1—H1A 0.98 C12—C13 1.418 (2)
C1—H1B 0.98 C13—C14 1.375 (2)
C1—H1C 0.98 C13—H13 0.95
C3—N4 1.311 (2) C14—C15 1.470 (2)
C3—O2 1.3490 (18) C15—N17 1.3297 (19)
C3—C14 1.436 (2) C15—N16 1.3646 (18)
C5—N4 1.376 (2) C18—N17 1.3912 (19)
C5—C6 1.414 (2) C18—C19 1.402 (2)
C5—C12 1.416 (2) C18—C23 1.407 (2)
C6—C7 1.379 (2) C19—C20 1.382 (2)
C6—H6 0.95 C19—H19 0.95
C7—O8 1.372 (2) C20—C21 1.409 (2)
C7—C10 1.416 (3) C20—H20 0.95
C9—O8 1.433 (2) C21—C22 1.381 (2)
C9—H9A 0.98 C21—H21 0.95
C9—H9B 0.98 C22—C23 1.397 (2)
C9—H9C 0.98 C22—H22 0.95
C10—C11 1.371 (2) C23—N16 1.3817 (19)
C10—H10 0.95 N16—H16 0.88
C11—C12 1.420 (2)
O2—C1—H1A 109.5 C14—C13—H13 119.8
O2—C1—H1B 109.5 C12—C13—H13 119.8
H1A—C1—H1B 109.5 C13—C14—C3 116.74 (14)
O2—C1—H1C 109.5 C13—C14—C15 120.74 (14)
H1A—C1—H1C 109.5 C3—C14—C15 122.49 (13)
H1B—C1—H1C 109.5 N17—C15—N16 112.88 (13)
N4—C3—O2 119.97 (14) N17—C15—C14 122.37 (13)
N4—C3—C14 125.19 (14) N16—C15—C14 124.70 (13)
O2—C3—C14 114.84 (13) N17—C18—C19 130.07 (14)
N4—C5—C6 117.44 (14) N17—C18—C23 109.77 (13)
N4—C5—C12 122.40 (14) C19—C18—C23 120.15 (14)
C6—C5—C12 120.13 (14) C20—C19—C18 117.66 (15)
C7—C6—C5 119.29 (16) C20—C19—H19 121.2
C7—C6—H6 120.4 C18—C19—H19 121.2
C5—C6—H6 120.4 C19—C20—C21 121.37 (16)
O8—C7—C6 124.28 (16) C19—C20—H20 119.3
O8—C7—C10 114.55 (15) C21—C20—H20 119.3
C6—C7—C10 121.17 (16) C22—C21—C20 121.94 (15)
O8—C9—H9A 109.5 C22—C21—H21 119
O8—C9—H9B 109.5 C20—C21—H21 119
H9A—C9—H9B 109.5 C21—C22—C23 116.50 (15)
O8—C9—H9C 109.5 C21—C22—H22 121.7
H9A—C9—H9C 109.5 C23—C22—H22 121.7
H9B—C9—H9C 109.5 N16—C23—C22 132.20 (14)
C11—C10—C7 119.87 (16) N16—C23—C18 105.44 (13)
C11—C10—H10 120.1 C22—C23—C18 122.36 (14)
C7—C10—H10 120.1 C3—N4—C5 117.44 (13)
C10—C11—C12 120.65 (16) C15—N16—C23 107.05 (12)
C10—C11—H11 119.7 C15—N16—H16 126.5
C12—C11—H11 119.7 C23—N16—H16 126.5
C5—C12—C13 117.74 (14) C15—N17—C18 104.86 (12)
C5—C12—C11 118.88 (15) C3—O2—C1 117.47 (12)
C13—C12—C11 123.36 (15) C7—O8—C9 117.27 (14)
C14—C13—C12 120.40 (14)
N4—C5—C6—C7 −177.24 (15) C23—C18—C19—C20 −0.8 (2)
C12—C5—C6—C7 1.1 (2) C18—C19—C20—C21 0.3 (3)
C5—C6—C7—O8 179.35 (15) C19—C20—C21—C22 −0.1 (3)
C5—C6—C7—C10 −1.1 (3) C20—C21—C22—C23 0.4 (2)
O8—C7—C10—C11 −179.94 (16) C21—C22—C23—N16 179.34 (16)
C6—C7—C10—C11 0.5 (3) C21—C22—C23—C18 −1.0 (2)
C7—C10—C11—C12 0.1 (3) N17—C18—C23—N16 0.35 (17)
N4—C5—C12—C13 −0.8 (2) C19—C18—C23—N16 −179.03 (14)
C6—C5—C12—C13 −179.12 (14) N17—C18—C23—C22 −179.41 (14)
N4—C5—C12—C11 177.74 (15) C19—C18—C23—C22 1.2 (2)
C6—C5—C12—C11 −0.6 (2) O2—C3—N4—C5 −176.33 (13)
C10—C11—C12—C5 −0.1 (3) C14—C3—N4—C5 3.4 (2)
C10—C11—C12—C13 178.40 (16) C6—C5—N4—C3 176.76 (14)
C5—C12—C13—C14 1.5 (2) C12—C5—N4—C3 −1.6 (2)
C11—C12—C13—C14 −176.94 (15) N17—C15—N16—C23 −0.02 (17)
C12—C13—C14—C3 0.0 (2) C14—C15—N16—C23 −177.42 (14)
C12—C13—C14—C15 177.97 (14) C22—C23—N16—C15 179.52 (16)
N4—C3—C14—C13 −2.7 (2) C18—C23—N16—C15 −0.20 (16)
O2—C3—C14—C13 177.08 (13) N16—C15—N17—C18 0.23 (17)
N4—C3—C14—C15 179.41 (14) C14—C15—N17—C18 177.70 (14)
O2—C3—C14—C15 −0.8 (2) C19—C18—N17—C15 178.94 (17)
C13—C14—C15—N17 −22.2 (2) C23—C18—N17—C15 −0.36 (17)
C3—C14—C15—N17 155.59 (15) N4—C3—O2—C1 0.8 (2)
C13—C14—C15—N16 154.92 (15) C14—C3—O2—C1 −179.00 (13)
C3—C14—C15—N16 −27.2 (2) C6—C7—O8—C9 2.5 (3)
N17—C18—C19—C20 179.94 (16) C10—C7—O8—C9 −177.05 (16)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg4 are the centroids of the N16/N17/C15/C18/C23, N4/C3/C5/C12–C14 and C18–C23 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N16—H16···N17i 0.88 2.02 2.8397 (17) 154
N16—H16···O2 0.88 2.27 2.7107 (17) 111
C1—H1A···Cg2ii 0.98 2.67 3.3101 (18) 123
C1—H1C···Cg1iii 0.98 2.82 3.4955 (17) 127
C20—H20···Cg4iv 0.95 2.99 3.8271 (18) 148

Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+5/2, y−1/2, z; (iii) x+1, y, z; (iv) x−1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6897).

References

  1. Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313.
  2. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2001). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Fioraventi, S., Pellacani, L., Tardella, P. A., Morreale, A. & Del Signore, G. (2006). J. Comb. Chem. 8, 808–811. [DOI] [PubMed]
  8. Hayour, H., Bouraiou, A., Bouacida, S., Berrée, F., Carboni, B., Roisnel, T. & Belfaitah, A. (2011). Tetrahedron Lett. 52, 4868–4871.
  9. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032357/hb6897sup1.cif

e-68-o2492-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032357/hb6897Isup2.hkl

e-68-o2492-Isup2.hkl (163.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032357/hb6897Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES