Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 18;68(Pt 8):o2493–o2494. doi: 10.1107/S1600536812031820

(3E,5E)-3,5-Bis(4-methyl­benzyl­idene)-1-[3-(piperidin-1-yl)propano­yl]piperidin-4-one

Yalda Kia a, Hasnah Osman a,, Vikneswaran Murugaiyah b, Suhana Arshad c, Ibrahim Abdul Razak c,*,§
PMCID: PMC3414948  PMID: 22904935

Abstract

In the title compound, C29H34N2O2, the central piperidine ring adopts a half-chair conformation, whereas the terminal one adopts a chair conformation. The mean plane of the central piperidine ring [maximum deviation = 0.384 (2) Å] makes dihedral angles of 64.82 (13) and 17.55 (13)° with the benzene rings. In the crystal, mol­ecules are linked into a tape along the b axis via C—H⋯O inter­actions, generating R 2 2(20) and R 2 1(6) graph-set motifs. C—H⋯π inter­actions are observed between the tapes.

Related literature  

For biological activities of α,β-unsaturated ketones, see: Tanaka et al. (2003); Nakayachi et al. (2004); Lee et al. (2004); Hertzberg et al. (1989). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Aridoss et al. (2010); Kia et al. (2011). For graph-set motifs, see: Bernstein et al. (1995). For the preparation of 1-acryloyl-3,5-dibenzyl­idenepiperidin-4-one, see: Dimmock et al. (2001). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2493-scheme1.jpg

Experimental  

Crystal data  

  • C29H34N2O2

  • M r = 442.58

  • Monoclinic, Inline graphic

  • a = 12.2913 (8) Å

  • b = 9.9753 (8) Å

  • c = 19.9993 (14) Å

  • β = 100.884 (4)°

  • V = 2408.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.46 × 0.25 × 0.20 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.966, T max = 0.985

  • 18968 measured reflections

  • 6852 independent reflections

  • 3483 reflections with I > I > 2σ(I)

  • R int = 0.075

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.078

  • wR(F 2) = 0.228

  • S = 1.04

  • 6852 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031820/is5165sup1.cif

e-68-o2493-sup1.cif (33.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031820/is5165Isup2.hkl

e-68-o2493-Isup2.hkl (335.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031820/is5165Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the benzene C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.95 2.51 3.346 (3) 147
C21—H21A⋯O2i 0.98 2.44 3.371 (4) 160
C21—H21C⋯O1ii 0.98 2.52 3.446 (3) 157
C4—H4ACg1iii 0.95 2.69 3.526 (3) 148
C27—H27ACg1iv 0.99 2.74 3.719 (3) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for an FRGS grant (No. 203/PKIMIA/6711179) and an RU grant (No. 1001/PFIZIK/811151) to conduct this work. YK thanks USM for providing research facility. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme Fellowship.

supplementary crystallographic information

Comment

Claisen-Schmidt condensation reaction between aldehyde and ketone, leads to biological active class of compound, namely α,β-unsaturated ketones. These compounds show a wide range of biological activities such as enzyme inhibitory (Tanaka et al., 2003), cytotoxic and antitumor (Nakayachi et al., 2004). This conjugated system, O═CH—CH═CH2 is the key moiety which promotes the bioactivities in the title compound (Lee et al., 2004). α, β-unsaturated ketones can be considered as a Michael acceptor which is an active moiety showing enzyme inhibitory activity (Hertzberg et al., 1989). Due to these reasons, the crystal structure determination of the title compound was carried out and the results are presented in this paper.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges and comparable to the related structures (Aridoss et al., 2010; Kia et al., 2011). The piperidine rings (N1/C8–C12 and N2/C25–C29) adopt different conformations (Cremer & Pople, 1975). N1/C8–C12 adopts a half-chair conformation [puckering parameters, Q= 0.556 (3) Å, Θ= 117.4 (3)° and Φ= 157.4 (3)°], whereas, N2/C25–C29 adopts a chair conformation [puckering parameters, Q= 0.573 (3) Å, Θ= 3.3 (3)° and Φ= 329 (5)°]. The least square plane through both rings form a dihedral angle of 18.29 (13)° between them. The least-square plane of the central piperidine ring [N1/C8–C12, maximum deviation of 0.384 (2) Å at atom N1] forms dihedral angles of 64.82 (13) and 17.55 (13)°, respectively, with the pendant benzene rings (C1–C6 and C14–C19).

In the crystal packing (Fig. 2), molecules are linked into a tape along the b axis via intermolecular C16—H16A···O2, C21—H21A···O2 and C21—H21C···O1 interactions (Table 1), generating R22(20) and R12(6) graph-set motifs (Bernstein et al., 1995). The crystal structure is further stabilized by the intermolecular C4—H4A···Cg1 and C27—H27A···Cg1 (Table 1) interactions (Cg1 is the centroid of the benzene ring, C14–C19).

Experimental

1-Acryloyl-3,5-dibenzylidenepiperidin-4-one was synthesized as reported in the literature (Dimmock et al., 2001). The title compound was prepared by refluxing 1-acryloyl-3,5-dibenzylidenepiperidin-4-one (0.6 mmol) with piperidine (0.6 mmol) in ethanol. After completion of the reaction as evident from TLC, the mixture was poured into ice. The precipitated solid was filtered and washed with water. The pure solid was then recrystallized from ethanol to afford the title compound as yellow crystals.

Refinement

All H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C29H34N2O2 F(000) = 952
Mr = 442.58 Dx = 1.221 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3337 reflections
a = 12.2913 (8) Å θ = 2.3–29.9°
b = 9.9753 (8) Å µ = 0.08 mm1
c = 19.9993 (14) Å T = 100 K
β = 100.884 (4)° Block, yellow
V = 2408.0 (3) Å3 0.46 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6852 independent reflections
Radiation source: fine-focus sealed tube 3483 reflections with I > I > 2σ(I)
Graphite monochromator Rint = 0.075
φ and ω scans θmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −17→17
Tmin = 0.966, Tmax = 0.985 k = −13→11
18968 measured reflections l = −26→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.097P)2 + 0.6841P] where P = (Fo2 + 2Fc2)/3
6852 reflections (Δ/σ)max < 0.001
300 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.33838 (15) 0.3747 (2) 0.18190 (10) 0.0257 (5)
O2 0.26832 (17) −0.1316 (2) 0.11812 (11) 0.0389 (6)
N1 0.39181 (18) −0.0171 (2) 0.19541 (11) 0.0226 (5)
N2 0.58294 (18) −0.2400 (2) 0.05042 (11) 0.0229 (5)
C1 0.6704 (2) 0.2560 (3) 0.07841 (14) 0.0243 (6)
H1A 0.6163 0.2964 0.0442 0.029*
C2 0.7717 (2) 0.2198 (3) 0.06313 (15) 0.0249 (6)
H2A 0.7854 0.2341 0.0185 0.030*
C3 0.8540 (2) 0.1623 (3) 0.11272 (15) 0.0236 (6)
C4 0.8308 (2) 0.1435 (3) 0.17715 (14) 0.0246 (6)
H4A 0.8863 0.1065 0.2118 0.030*
C5 0.7293 (2) 0.1768 (3) 0.19258 (14) 0.0243 (6)
H5A 0.7155 0.1608 0.2371 0.029*
C6 0.6463 (2) 0.2343 (3) 0.14288 (13) 0.0205 (6)
C7 0.5366 (2) 0.2719 (3) 0.15616 (13) 0.0215 (6)
H7A 0.5085 0.3562 0.1387 0.026*
C8 0.4717 (2) 0.2015 (3) 0.18984 (13) 0.0192 (6)
C9 0.3625 (2) 0.2580 (3) 0.19813 (13) 0.0199 (6)
C10 0.2861 (2) 0.1705 (3) 0.22883 (13) 0.0191 (6)
C11 0.3075 (2) 0.0209 (3) 0.23378 (14) 0.0222 (6)
H11A 0.3320 −0.0046 0.2821 0.027*
H11B 0.2380 −0.0279 0.2158 0.027*
C12 0.4938 (2) 0.0595 (3) 0.21510 (14) 0.0234 (6)
H12A 0.5536 0.0192 0.1947 0.028*
H12B 0.5174 0.0590 0.2652 0.028*
C13 0.2031 (2) 0.2322 (3) 0.25215 (13) 0.0203 (6)
H13A 0.1985 0.3258 0.2431 0.024*
C14 0.1187 (2) 0.1830 (3) 0.28866 (13) 0.0199 (6)
C15 0.0454 (2) 0.2783 (3) 0.30679 (14) 0.0226 (6)
H15A 0.0513 0.3689 0.2933 0.027*
C16 −0.0347 (2) 0.2446 (3) 0.34341 (14) 0.0225 (6)
H16A −0.0828 0.3120 0.3547 0.027*
C17 −0.0461 (2) 0.1121 (3) 0.36419 (14) 0.0207 (6)
C18 0.0264 (2) 0.0167 (3) 0.34587 (14) 0.0234 (6)
H18A 0.0196 −0.0739 0.3590 0.028*
C19 0.1072 (2) 0.0493 (3) 0.30944 (13) 0.0220 (6)
H19A 0.1552 −0.0182 0.2983 0.026*
C20 0.9643 (2) 0.1219 (3) 0.09596 (16) 0.0323 (7)
H20A 1.0236 0.1417 0.1348 0.049*
H20B 0.9771 0.1720 0.0560 0.049*
H20C 0.9637 0.0256 0.0861 0.049*
C21 −0.1308 (2) 0.0747 (3) 0.40574 (15) 0.0285 (7)
H21A −0.1806 0.1507 0.4076 0.043*
H21B −0.0935 0.0511 0.4520 0.043*
H21C −0.1737 −0.0024 0.3848 0.043*
C22 0.3612 (2) −0.0824 (3) 0.13444 (15) 0.0255 (7)
C23 0.4436 (2) −0.0929 (3) 0.08775 (14) 0.0260 (7)
H23A 0.4927 −0.0134 0.0940 0.031*
H23B 0.4036 −0.0938 0.0399 0.031*
C24 0.5139 (2) −0.2201 (3) 0.10200 (14) 0.0262 (7)
H24A 0.5620 −0.2133 0.1475 0.031*
H24B 0.4646 −0.2986 0.1022 0.031*
C25 0.6299 (2) −0.3755 (3) 0.05634 (14) 0.0249 (6)
H25A 0.5691 −0.4418 0.0525 0.030*
H25B 0.6777 −0.3862 0.1017 0.030*
C26 0.6971 (2) −0.4027 (3) 0.00178 (15) 0.0262 (7)
H26A 0.6476 −0.4022 −0.0434 0.031*
H26B 0.7315 −0.4925 0.0091 0.031*
C27 0.7874 (2) −0.2969 (3) 0.00328 (16) 0.0292 (7)
H27A 0.8437 −0.3069 0.0455 0.035*
H27B 0.8245 −0.3100 −0.0361 0.035*
C28 0.7380 (2) −0.1587 (3) 0.00057 (16) 0.0292 (7)
H28A 0.6891 −0.1447 −0.0443 0.035*
H28B 0.7979 −0.0911 0.0057 0.035*
C29 0.6719 (2) −0.1403 (3) 0.05646 (15) 0.0255 (6)
H29A 0.7215 −0.1495 0.1013 0.031*
H29B 0.6396 −0.0491 0.0536 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0260 (10) 0.0216 (11) 0.0307 (11) 0.0049 (9) 0.0085 (9) 0.0044 (9)
O2 0.0363 (12) 0.0433 (15) 0.0414 (13) −0.0166 (11) 0.0183 (11) −0.0151 (11)
N1 0.0239 (11) 0.0220 (13) 0.0249 (12) 0.0008 (10) 0.0120 (10) −0.0035 (10)
N2 0.0246 (11) 0.0216 (14) 0.0245 (12) 0.0006 (10) 0.0098 (10) −0.0003 (10)
C1 0.0259 (14) 0.0223 (16) 0.0255 (14) 0.0006 (12) 0.0070 (12) 0.0005 (12)
C2 0.0298 (15) 0.0238 (16) 0.0232 (14) −0.0056 (12) 0.0101 (12) 0.0028 (12)
C3 0.0223 (13) 0.0180 (15) 0.0325 (16) −0.0036 (11) 0.0103 (12) −0.0052 (12)
C4 0.0192 (13) 0.0281 (17) 0.0256 (15) −0.0023 (12) 0.0019 (11) −0.0021 (13)
C5 0.0292 (15) 0.0244 (16) 0.0194 (14) −0.0030 (12) 0.0044 (12) −0.0027 (12)
C6 0.0225 (13) 0.0160 (14) 0.0228 (14) −0.0038 (11) 0.0036 (11) −0.0015 (11)
C7 0.0226 (13) 0.0195 (15) 0.0220 (14) −0.0009 (11) 0.0033 (11) −0.0020 (11)
C8 0.0197 (13) 0.0198 (15) 0.0185 (13) −0.0001 (11) 0.0047 (11) −0.0007 (11)
C9 0.0219 (13) 0.0228 (16) 0.0149 (12) 0.0025 (11) 0.0027 (10) −0.0031 (11)
C10 0.0204 (13) 0.0211 (15) 0.0156 (13) −0.0008 (11) 0.0033 (10) −0.0004 (11)
C11 0.0264 (14) 0.0184 (15) 0.0252 (14) −0.0029 (12) 0.0137 (12) −0.0001 (12)
C12 0.0221 (13) 0.0235 (16) 0.0253 (15) 0.0031 (11) 0.0064 (12) 0.0009 (12)
C13 0.0219 (13) 0.0161 (14) 0.0231 (14) −0.0004 (11) 0.0043 (11) −0.0015 (11)
C14 0.0176 (12) 0.0221 (15) 0.0203 (13) −0.0016 (11) 0.0041 (11) −0.0027 (11)
C15 0.0229 (13) 0.0172 (15) 0.0292 (15) 0.0047 (11) 0.0085 (12) 0.0018 (12)
C16 0.0224 (13) 0.0226 (16) 0.0240 (14) 0.0023 (12) 0.0078 (11) 0.0003 (12)
C17 0.0200 (13) 0.0217 (16) 0.0219 (14) 0.0011 (11) 0.0075 (11) −0.0023 (12)
C18 0.0280 (14) 0.0188 (15) 0.0250 (14) −0.0031 (12) 0.0093 (12) 0.0021 (12)
C19 0.0267 (14) 0.0183 (15) 0.0223 (14) 0.0002 (11) 0.0080 (12) −0.0018 (11)
C20 0.0296 (15) 0.0337 (19) 0.0368 (18) −0.0018 (14) 0.0143 (14) −0.0030 (15)
C21 0.0287 (15) 0.0249 (17) 0.0342 (17) 0.0016 (13) 0.0121 (13) −0.0002 (13)
C22 0.0286 (15) 0.0220 (16) 0.0280 (15) −0.0002 (12) 0.0105 (12) −0.0013 (13)
C23 0.0286 (14) 0.0266 (17) 0.0253 (15) −0.0003 (13) 0.0113 (12) −0.0013 (13)
C24 0.0287 (15) 0.0274 (17) 0.0247 (15) 0.0014 (13) 0.0108 (12) 0.0014 (13)
C25 0.0283 (14) 0.0202 (16) 0.0274 (15) 0.0015 (12) 0.0082 (12) 0.0013 (12)
C26 0.0292 (15) 0.0232 (16) 0.0296 (15) 0.0041 (12) 0.0142 (13) 0.0011 (13)
C27 0.0277 (15) 0.0261 (17) 0.0368 (17) 0.0033 (13) 0.0135 (13) −0.0010 (14)
C28 0.0301 (15) 0.0251 (17) 0.0355 (17) −0.0019 (13) 0.0143 (14) 0.0001 (14)
C29 0.0295 (14) 0.0208 (16) 0.0284 (15) −0.0047 (12) 0.0116 (13) −0.0009 (12)

Geometric parameters (Å, º)

O1—C9 1.230 (3) C15—C16 1.375 (4)
O2—C22 1.229 (3) C15—H15A 0.9500
N1—C22 1.371 (4) C16—C17 1.400 (4)
N1—C11 1.451 (3) C16—H16A 0.9500
N1—C12 1.457 (3) C17—C18 1.399 (4)
N2—C25 1.465 (4) C17—C21 1.496 (4)
N2—C29 1.466 (3) C18—C19 1.377 (4)
N2—C24 1.468 (4) C18—H18A 0.9500
C1—C2 1.384 (4) C19—H19A 0.9500
C1—C6 1.394 (4) C20—H20A 0.9800
C1—H1A 0.9500 C20—H20B 0.9800
C2—C3 1.399 (4) C20—H20C 0.9800
C2—H2A 0.9500 C21—H21A 0.9800
C3—C4 1.384 (4) C21—H21B 0.9800
C3—C20 1.511 (4) C21—H21C 0.9800
C4—C5 1.381 (4) C22—C23 1.505 (4)
C4—H4A 0.9500 C23—C24 1.532 (4)
C5—C6 1.405 (4) C23—H23A 0.9900
C5—H5A 0.9500 C23—H23B 0.9900
C6—C7 1.471 (4) C24—H24A 0.9900
C7—C8 1.336 (4) C24—H24B 0.9900
C7—H7A 0.9500 C25—C26 1.513 (4)
C8—C9 1.493 (4) C25—H25A 0.9900
C8—C12 1.511 (4) C25—H25B 0.9900
C9—C10 1.497 (4) C26—C27 1.527 (4)
C10—C13 1.349 (4) C26—H26A 0.9900
C10—C11 1.515 (4) C26—H26B 0.9900
C11—H11A 0.9900 C27—C28 1.504 (4)
C11—H11B 0.9900 C27—H27A 0.9900
C12—H12A 0.9900 C27—H27B 0.9900
C12—H12B 0.9900 C28—C29 1.512 (4)
C13—C14 1.462 (4) C28—H28A 0.9900
C13—H13A 0.9500 C28—H28B 0.9900
C14—C15 1.403 (4) C29—H29A 0.9900
C14—C19 1.412 (4) C29—H29B 0.9900
C22—N1—C11 119.4 (2) C19—C18—C17 122.5 (3)
C22—N1—C12 124.6 (2) C19—C18—H18A 118.8
C11—N1—C12 112.6 (2) C17—C18—H18A 118.8
C25—N2—C29 110.1 (2) C18—C19—C14 120.1 (3)
C25—N2—C24 109.8 (2) C18—C19—H19A 120.0
C29—N2—C24 111.8 (2) C14—C19—H19A 120.0
C2—C1—C6 121.4 (3) C3—C20—H20A 109.5
C2—C1—H1A 119.3 C3—C20—H20B 109.5
C6—C1—H1A 119.3 H20A—C20—H20B 109.5
C1—C2—C3 120.7 (3) C3—C20—H20C 109.5
C1—C2—H2A 119.7 H20A—C20—H20C 109.5
C3—C2—H2A 119.7 H20B—C20—H20C 109.5
C4—C3—C2 117.8 (2) C17—C21—H21A 109.5
C4—C3—C20 121.4 (3) C17—C21—H21B 109.5
C2—C3—C20 120.7 (3) H21A—C21—H21B 109.5
C5—C4—C3 121.9 (3) C17—C21—H21C 109.5
C5—C4—H4A 119.0 H21A—C21—H21C 109.5
C3—C4—H4A 119.0 H21B—C21—H21C 109.5
C4—C5—C6 120.4 (3) O2—C22—N1 120.8 (3)
C4—C5—H5A 119.8 O2—C22—C23 120.5 (3)
C6—C5—H5A 119.8 N1—C22—C23 118.7 (2)
C1—C6—C5 117.7 (2) C22—C23—C24 111.3 (2)
C1—C6—C7 119.4 (2) C22—C23—H23A 109.4
C5—C6—C7 123.0 (3) C24—C23—H23A 109.4
C8—C7—C6 127.7 (3) C22—C23—H23B 109.4
C8—C7—H7A 116.1 C24—C23—H23B 109.4
C6—C7—H7A 116.1 H23A—C23—H23B 108.0
C7—C8—C9 119.5 (2) N2—C24—C23 111.2 (2)
C7—C8—C12 125.1 (2) N2—C24—H24A 109.4
C9—C8—C12 115.2 (2) C23—C24—H24A 109.4
O1—C9—C8 120.4 (3) N2—C24—H24B 109.4
O1—C9—C10 121.5 (2) C23—C24—H24B 109.4
C8—C9—C10 118.1 (2) H24A—C24—H24B 108.0
C13—C10—C9 116.7 (3) N2—C25—C26 111.6 (2)
C13—C10—C11 124.1 (2) N2—C25—H25A 109.3
C9—C10—C11 119.2 (2) C26—C25—H25A 109.3
N1—C11—C10 110.8 (2) N2—C25—H25B 109.3
N1—C11—H11A 109.5 C26—C25—H25B 109.3
C10—C11—H11A 109.5 H25A—C25—H25B 108.0
N1—C11—H11B 109.5 C25—C26—C27 110.8 (2)
C10—C11—H11B 109.5 C25—C26—H26A 109.5
H11A—C11—H11B 108.1 C27—C26—H26A 109.5
N1—C12—C8 108.1 (2) C25—C26—H26B 109.5
N1—C12—H12A 110.1 C27—C26—H26B 109.5
C8—C12—H12A 110.1 H26A—C26—H26B 108.1
N1—C12—H12B 110.1 C28—C27—C26 110.2 (2)
C8—C12—H12B 110.1 C28—C27—H27A 109.6
H12A—C12—H12B 108.4 C26—C27—H27A 109.6
C10—C13—C14 132.4 (3) C28—C27—H27B 109.6
C10—C13—H13A 113.8 C26—C27—H27B 109.6
C14—C13—H13A 113.8 H27A—C27—H27B 108.1
C15—C14—C19 117.3 (3) C27—C28—C29 110.8 (3)
C15—C14—C13 116.9 (3) C27—C28—H28A 109.5
C19—C14—C13 125.7 (3) C29—C28—H28A 109.5
C16—C15—C14 122.1 (3) C27—C28—H28B 109.5
C16—C15—H15A 119.0 C29—C28—H28B 109.5
C14—C15—H15A 119.0 H28A—C28—H28B 108.1
C15—C16—C17 120.7 (3) N2—C29—C28 110.7 (2)
C15—C16—H16A 119.6 N2—C29—H29A 109.5
C17—C16—H16A 119.6 C28—C29—H29A 109.5
C18—C17—C16 117.4 (3) N2—C29—H29B 109.5
C18—C17—C21 121.3 (3) C28—C29—H29B 109.5
C16—C17—C21 121.3 (3) H29A—C29—H29B 108.1
C6—C1—C2—C3 −1.2 (4) C11—C10—C13—C14 3.1 (4)
C1—C2—C3—C4 −0.2 (4) C10—C13—C14—C15 178.4 (3)
C1—C2—C3—C20 179.6 (3) C10—C13—C14—C19 1.0 (5)
C2—C3—C4—C5 1.4 (4) C19—C14—C15—C16 0.2 (4)
C20—C3—C4—C5 −178.3 (3) C13—C14—C15—C16 −177.5 (2)
C3—C4—C5—C6 −1.3 (4) C14—C15—C16—C17 0.0 (4)
C2—C1—C6—C5 1.3 (4) C15—C16—C17—C18 −0.3 (4)
C2—C1—C6—C7 −178.7 (3) C15—C16—C17—C21 178.3 (3)
C4—C5—C6—C1 0.0 (4) C16—C17—C18—C19 0.6 (4)
C4—C5—C6—C7 179.9 (3) C21—C17—C18—C19 −178.0 (2)
C1—C6—C7—C8 136.4 (3) C17—C18—C19—C14 −0.5 (4)
C5—C6—C7—C8 −43.5 (4) C15—C14—C19—C18 0.1 (4)
C6—C7—C8—C9 179.7 (2) C13—C14—C19—C18 177.6 (2)
C6—C7—C8—C12 −7.0 (4) C11—N1—C22—O2 −14.0 (4)
C7—C8—C9—O1 −9.2 (4) C12—N1—C22—O2 −171.4 (3)
C12—C8—C9—O1 176.9 (2) C11—N1—C22—C23 166.0 (2)
C7—C8—C9—C10 173.0 (2) C12—N1—C22—C23 8.7 (4)
C12—C8—C9—C10 −1.0 (3) O2—C22—C23—C24 −89.8 (3)
O1—C9—C10—C13 −14.8 (4) N1—C22—C23—C24 90.2 (3)
C8—C9—C10—C13 163.1 (2) C25—N2—C24—C23 −167.5 (2)
O1—C9—C10—C11 166.9 (2) C29—N2—C24—C23 70.0 (3)
C8—C9—C10—C11 −15.3 (3) C22—C23—C24—N2 171.9 (2)
C22—N1—C11—C10 −105.7 (3) C29—N2—C25—C26 −59.3 (3)
C12—N1—C11—C10 54.2 (3) C24—N2—C25—C26 177.2 (2)
C13—C10—C11—N1 171.5 (2) N2—C25—C26—C27 55.5 (3)
C9—C10—C11—N1 −10.3 (3) C25—C26—C27—C28 −52.5 (3)
C22—N1—C12—C8 87.9 (3) C26—C27—C28—C29 54.1 (3)
C11—N1—C12—C8 −70.9 (3) C25—N2—C29—C28 60.6 (3)
C7—C8—C12—N1 −132.5 (3) C24—N2—C29—C28 −177.1 (2)
C9—C8—C12—N1 41.0 (3) C27—C28—C29—N2 −58.7 (3)
C9—C10—C13—C14 −175.2 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the benzene C14–C19 ring.

D—H···A D—H H···A D···A D—H···A
C16—H16A···O2i 0.95 2.51 3.346 (3) 147
C21—H21A···O2i 0.98 2.44 3.371 (4) 160
C21—H21C···O1ii 0.98 2.52 3.446 (3) 157
C4—H4A···Cg1iii 0.95 2.69 3.526 (3) 148
C27—H27A···Cg1iv 0.99 2.74 3.719 (3) 168

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) x+1, y, z; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5165).

References

  1. Aridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010). Acta Cryst. E66, o2005. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H.-B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavatha, E. K. (2001). J. Med. Chem. 44, 586–593. [DOI] [PubMed]
  7. Hertzberg, R. P., Caranfa, M. J., Holden, K. G., Jakas, D. R., Gallagher, G., Mattern, M. R., Mong, S. M., Bartus, J. O., Johnson, R. K. & Kingsbury, W. D. (1989). J. Med. Chem. 32, 715–720. [DOI] [PubMed]
  8. Kia, Y., Osman, H., Murugaiyah, V., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1299–o1300. [DOI] [PMC free article] [PubMed]
  9. Lee, K. H., Huang, E. S., Piantadosi, C., Pagano, J. S. & Geissman, T. A. (2004). Cancer Res. 31, 1649–1654. [PubMed]
  10. Nakayachi, T., Yasumoto, E., Nakano, K., Morshed, S. R. M., Hashimoto, K., Kikuchi, H., Nishikawa, H., Kawase, M. & Sakagami, H. (2004). Anticancer Res. 24, 737–742. [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Tanaka, T., Kawase, M. & Tani, S. (2003). Life Sci. 73, 2985–2990. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031820/is5165sup1.cif

e-68-o2493-sup1.cif (33.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031820/is5165Isup2.hkl

e-68-o2493-Isup2.hkl (335.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031820/is5165Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES