Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 21;68(Pt 8):o2517. doi: 10.1107/S160053681203190X

9-Allyl-9H-carbazole-3,6-dicarbaldehyde

Bin Bin Hu a, Xiang Chao Zeng a,*, Lei Bian a, Ru He a
PMCID: PMC3414967  PMID: 22904954

Abstract

In the title mol­ecule, C17H13NO2, the allyl group is almost perpendicular to the carbazole mean plane, with a dihedral angle of 89.0 (2)°. In the crystal, nonclassical C—H⋯O hydrogen bonds link the mol­ecules into corrugated sheets parallel to the bc plane. Weak inter­molecular π–π inter­actions are observed between the benzene rings [centroid–centroid distance = 3.874 (4) Å] from neighbouring sheets.

Related literature  

For applications of carbazole derivatives, see: Hong et al. (2012); Samanta et al. (2001); Koyuncua et al. (2011); Zhang et al. (2010). For related structures, see: Wang et al. (2008); Zhao et al. (2012).graphic file with name e-68-o2517-scheme1.jpg

Experimental  

Crystal data  

  • C17H13NO2

  • M r = 263.28

  • Monoclinic, Inline graphic

  • a = 8.4062 (8) Å

  • b = 10.3279 (10) Å

  • c = 15.2432 (19) Å

  • β = 94.958 (9)°

  • V = 1318.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.44 × 0.28 × 0.26 mm

Data collection  

  • Oxford Gemini S Ultra area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.963, T max = 0.978

  • 5464 measured reflections

  • 2835 independent reflections

  • 1909 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.118

  • S = 1.02

  • 2835 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203190X/cv5316sup1.cif

e-68-o2517-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203190X/cv5316Isup2.hkl

e-68-o2517-Isup2.hkl (139.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203190X/cv5316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.58 3.489 (3) 166
C5—H5⋯O2ii 0.93 2.54 3.332 (2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work has been supported by the Natural Science Foundation of Guangdong Province, China (grant No. 06300581).

supplementary crystallographic information

Comment

The carbazole ring has a highly conjugated π system with desirable optical and charge-transport properties, and these characteristics make carozole derivatives the excellent candidates to yield materials for applications in different areas of science, such as dye-sensitized solar cell (Hong et al., 2012), electroluminescent (Samanta et al., 2001), electrochromic displays (Koyuncua et al., 2011) and antibacterial and antitumor agents (Zhang et al., 2010). These are the reasons why they have attracted our interest. Here we report the crystal structure of the title compound which consists of a carbazole skeleton with a allyl group and two formacyls (Fig. 1).

In the title molecule, the bond lengths and angles are unexceptional, and generally agree with those observed in the related compounds (Wang et al., 2008; Zhao et al., 2012). The non-H atoms of the carbazole ring and the two formacyls are approximately coplanar with r.m.s. deviation from the best fit plane of 0.006 (3) °, the allyl group is almost perpendicular to the carbazole mean plane with a dihedral angle of 89.0 (2)°. In the crystal, C2—H···O1 and C5—H···O2 non-classical H-bonds (Table 1) link the molecules into corrugated sheets parallel to bc plane (Fig. 2). Weak intermolecular π–π interactions between the benzene rings [centroid-centroid distance = 3.874 (4) Å] from the neighbouring sheets stabilize further the crystal packing.

Experimental

Phosphorus oxychloride (2.0 ml, 20 mmol) was added dropwise to the mixture of dry dimethylformamide (DMF, 3.0 ml, 40 mmol) and 9-allylcarbazole (2.07 g, 10 mmol) in chlorobenzene (20 ml) at 273 K under stirring. This solution was warmed up slowly to the room temperature in 0.5 h and stirred for another 0.5 h. After standing for 18 h at 343 K, more 3 ml DMF and 2 ml phosphorus oxychloride were added and stirred for 18 h continuously at the same temperature. After cooling, the resulting mixture was neutralized with saturated sodium bicarbonate solution until pH reached a value of 6 - 7, then the chlorobenzene was removed by water steam distillation, and the product was extracted with chloroform. After washing three times with water, the organic layer was dried over magnesium sulfate and evaporated in vacuo. The residue was separated by silica-gel column chromatography using petroleum ether-ethyl acetate (10:1) as eluting solvent and the title compound (I) was obtained (55.2% yield). Light brown crystals suitable for X-ray analysis (m.p. 429 K) grew over a period of one week when the ethyl acetate solution of I was exposed to the air at room temperature.

Refinement

All H atoms were positioned geometrically [C—H = 0.97 Å for CH2, 0.93 Å for CH2(alkene), 0.93 Å for CH] and refined using a riding model, with Uiso = 1.2Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A portion of the crystal packing showing the sheet formed by the weak C—H···O hydrogen bonds (dashed lines).

Crystal data

C17H13NO2 Dx = 1.326 Mg m3
Mr = 263.28 Melting point: 429 K
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.4062 (8) Å Cell parameters from 1300 reflections
b = 10.3279 (10) Å θ = 3.3–29.4°
c = 15.2432 (19) Å µ = 0.09 mm1
β = 94.958 (9)° T = 293 K
V = 1318.4 (2) Å3 Block, light brown
Z = 4 0.44 × 0.28 × 0.26 mm
F(000) = 552

Data collection

Oxford Gemini S Ultra area-detector diffractometer 2835 independent reflections
Radiation source: fine-focus sealed tube 1909 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
φ and ω scans θmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −6→10
Tmin = 0.963, Tmax = 0.978 k = −12→12
5464 measured reflections l = −19→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2427P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2835 reflections Δρmax = 0.16 e Å3
182 parameters Δρmin = −0.15 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.047 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.59424 (16) 0.67631 (13) 1.01449 (10) 0.0497 (4)
C7 0.69533 (17) 0.55686 (15) 0.90689 (11) 0.0421 (4)
C5 0.84834 (18) 0.39928 (15) 1.01791 (11) 0.0451 (4)
H5 0.8926 0.3478 0.9763 0.054*
C1 0.68710 (19) 0.58033 (16) 1.05593 (12) 0.0461 (4)
C12 0.59952 (19) 0.66450 (16) 0.92455 (12) 0.0461 (4)
C9 0.64340 (19) 0.59883 (17) 0.75251 (12) 0.0483 (4)
C6 0.75183 (18) 0.50343 (15) 0.99146 (11) 0.0422 (4)
C4 0.87835 (19) 0.37238 (17) 1.10679 (12) 0.0483 (4)
C8 0.71472 (19) 0.52431 (16) 0.82040 (11) 0.0455 (4)
H8 0.7756 0.4525 0.8079 0.055*
C2 0.7177 (2) 0.55521 (19) 1.14551 (12) 0.0552 (5)
H2 0.6753 0.6072 1.1875 0.066*
O1 1.00518 (18) 0.22217 (15) 1.20823 (10) 0.0826 (5)
C11 0.5259 (2) 0.73978 (17) 0.85642 (13) 0.0537 (5)
H11 0.4626 0.8105 0.8682 0.064*
O2 0.62394 (17) 0.62669 (15) 0.59663 (10) 0.0806 (5)
C17 0.6687 (2) 0.5651 (2) 0.66156 (13) 0.0587 (5)
H17 0.7245 0.4891 0.6529 0.070*
C3 0.8126 (2) 0.45114 (19) 1.16965 (12) 0.0555 (5)
H3 0.8340 0.4321 1.2291 0.067*
C14 0.5887 (2) 0.89280 (17) 1.08156 (13) 0.0592 (5)
H14 0.5316 0.9572 1.1077 0.071*
C10 0.5500 (2) 0.70602 (17) 0.77173 (13) 0.0546 (5)
H10 0.5031 0.7556 0.7256 0.066*
C13 0.5018 (2) 0.77164 (17) 1.05870 (13) 0.0573 (5)
H13A 0.4682 0.7335 1.1122 0.069*
H13B 0.4064 0.7923 1.0209 0.069*
C16 0.9756 (2) 0.26040 (19) 1.13370 (14) 0.0601 (5)
H16 1.0191 0.2138 1.0893 0.072*
C15 0.7349 (3) 0.9192 (2) 1.06934 (15) 0.0763 (7)
H15A 0.7975 0.8582 1.0435 0.092*
H15B 0.7778 0.9992 1.0864 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0457 (8) 0.0427 (8) 0.0613 (10) 0.0001 (7) 0.0086 (7) −0.0127 (7)
C7 0.0380 (8) 0.0360 (8) 0.0528 (11) −0.0056 (7) 0.0068 (7) −0.0053 (7)
C5 0.0409 (8) 0.0425 (9) 0.0527 (11) −0.0054 (8) 0.0089 (7) −0.0038 (8)
C1 0.0413 (8) 0.0424 (9) 0.0554 (11) −0.0082 (8) 0.0087 (8) −0.0086 (8)
C12 0.0397 (8) 0.0384 (9) 0.0605 (12) −0.0079 (8) 0.0065 (7) −0.0081 (8)
C9 0.0441 (9) 0.0470 (10) 0.0539 (11) −0.0096 (9) 0.0047 (8) 0.0030 (8)
C6 0.0382 (8) 0.0398 (9) 0.0490 (10) −0.0058 (8) 0.0069 (7) −0.0058 (8)
C4 0.0445 (9) 0.0484 (9) 0.0524 (11) −0.0071 (8) 0.0059 (8) 0.0036 (8)
C8 0.0432 (8) 0.0403 (9) 0.0541 (11) −0.0025 (8) 0.0098 (7) −0.0031 (8)
C2 0.0542 (10) 0.0593 (11) 0.0536 (12) −0.0077 (10) 0.0141 (8) −0.0134 (9)
O1 0.0964 (11) 0.0819 (10) 0.0701 (10) 0.0061 (9) 0.0108 (8) 0.0289 (9)
C11 0.0467 (9) 0.0379 (9) 0.0762 (13) 0.0018 (8) 0.0045 (9) −0.0026 (9)
O2 0.0836 (10) 0.0966 (11) 0.0625 (10) 0.0006 (9) 0.0108 (8) 0.0236 (9)
C17 0.0551 (10) 0.0630 (12) 0.0588 (13) −0.0077 (10) 0.0090 (9) 0.0089 (10)
C3 0.0556 (10) 0.0632 (12) 0.0481 (11) −0.0115 (10) 0.0070 (8) −0.0009 (9)
C14 0.0607 (11) 0.0458 (10) 0.0705 (14) 0.0025 (10) 0.0025 (10) −0.0154 (9)
C10 0.0494 (10) 0.0454 (10) 0.0681 (13) −0.0051 (9) 0.0000 (9) 0.0081 (9)
C13 0.0501 (10) 0.0510 (10) 0.0725 (13) 0.0022 (9) 0.0144 (9) −0.0166 (10)
C16 0.0610 (11) 0.0576 (11) 0.0627 (13) −0.0049 (10) 0.0105 (9) 0.0114 (10)
C15 0.0719 (14) 0.0600 (13) 0.0958 (18) −0.0142 (12) 0.0002 (12) −0.0126 (12)

Geometric parameters (Å, º)

N1—C1 1.380 (2) C2—C3 1.370 (3)
N1—C12 1.381 (2) C2—H2 0.9300
N1—C13 1.455 (2) O1—C16 1.208 (2)
C7—C8 1.384 (2) C11—C10 1.369 (2)
C7—C12 1.412 (2) C11—H11 0.9300
C7—C6 1.444 (2) O2—C17 1.209 (2)
C5—C4 1.385 (2) C17—H17 0.9300
C5—C6 1.386 (2) C3—H3 0.9300
C5—H5 0.9300 C14—C15 1.288 (3)
C1—C2 1.392 (2) C14—C13 1.475 (2)
C1—C6 1.409 (2) C14—H14 0.9300
C12—C11 1.398 (2) C10—H10 0.9300
C9—C8 1.384 (2) C13—H13A 0.9700
C9—C10 1.403 (2) C13—H13B 0.9700
C9—C17 1.463 (3) C16—H16 0.9300
C4—C3 1.406 (3) C15—H15A 0.9300
C4—C16 1.455 (3) C15—H15B 0.9300
C8—H8 0.9300
C1—N1—C12 108.99 (13) C1—C2—H2 121.2
C1—N1—C13 125.26 (16) C10—C11—C12 117.82 (16)
C12—N1—C13 125.72 (15) C10—C11—H11 121.1
C8—C7—C12 119.27 (16) C12—C11—H11 121.1
C8—C7—C6 134.49 (15) O2—C17—C9 126.2 (2)
C12—C7—C6 106.23 (15) O2—C17—H17 116.9
C4—C5—C6 119.54 (16) C9—C17—H17 116.9
C4—C5—H5 120.2 C2—C3—C4 121.67 (17)
C6—C5—H5 120.2 C2—C3—H3 119.2
N1—C1—C2 129.20 (16) C4—C3—H3 119.2
N1—C1—C6 108.83 (15) C15—C14—C13 127.18 (19)
C2—C1—C6 121.96 (17) C15—C14—H14 116.4
N1—C12—C11 129.66 (16) C13—C14—H14 116.4
N1—C12—C7 109.06 (15) C11—C10—C9 121.94 (17)
C11—C12—C7 121.27 (17) C11—C10—H10 119.0
C8—C9—C10 119.79 (17) C9—C10—H10 119.0
C8—C9—C17 119.17 (17) N1—C13—C14 114.22 (14)
C10—C9—C17 121.04 (17) N1—C13—H13A 108.7
C5—C6—C1 119.09 (16) C14—C13—H13A 108.7
C5—C6—C7 134.05 (15) N1—C13—H13B 108.7
C1—C6—C7 106.87 (14) C14—C13—H13B 108.7
C5—C4—C3 120.10 (17) H13A—C13—H13B 107.6
C5—C4—C16 119.06 (17) O1—C16—C4 126.1 (2)
C3—C4—C16 120.82 (17) O1—C16—H16 116.9
C7—C8—C9 119.89 (16) C4—C16—H16 116.9
C7—C8—H8 120.1 C14—C15—H15A 120.0
C9—C8—H8 120.1 C14—C15—H15B 120.0
C3—C2—C1 117.63 (17) H15A—C15—H15B 120.0
C3—C2—H2 121.2
C12—N1—C1—C2 179.57 (16) C6—C5—C4—C16 178.05 (14)
C13—N1—C1—C2 −2.3 (3) C12—C7—C8—C9 1.4 (2)
C12—N1—C1—C6 −0.97 (17) C6—C7—C8—C9 −179.34 (16)
C13—N1—C1—C6 177.21 (14) C10—C9—C8—C7 −0.8 (2)
C1—N1—C12—C11 −179.46 (16) C17—C9—C8—C7 178.34 (15)
C13—N1—C12—C11 2.4 (3) N1—C1—C2—C3 178.68 (15)
C1—N1—C12—C7 1.20 (17) C6—C1—C2—C3 −0.7 (2)
C13—N1—C12—C7 −176.96 (14) N1—C12—C11—C10 −179.46 (16)
C8—C7—C12—N1 178.47 (13) C7—C12—C11—C10 −0.2 (2)
C6—C7—C12—N1 −0.95 (17) C8—C9—C17—O2 −174.17 (17)
C8—C7—C12—C11 −0.9 (2) C10—C9—C17—O2 5.0 (3)
C6—C7—C12—C11 179.64 (14) C1—C2—C3—C4 0.5 (3)
C4—C5—C6—C1 0.4 (2) C5—C4—C3—C2 0.2 (3)
C4—C5—C6—C7 −179.03 (16) C16—C4—C3—C2 −178.48 (16)
N1—C1—C6—C5 −179.23 (13) C12—C11—C10—C9 0.8 (2)
C2—C1—C6—C5 0.3 (2) C8—C9—C10—C11 −0.3 (3)
N1—C1—C6—C7 0.36 (17) C17—C9—C10—C11 −179.48 (16)
C2—C1—C6—C7 179.87 (14) C1—N1—C13—C14 91.2 (2)
C8—C7—C6—C5 0.6 (3) C12—N1—C13—C14 −90.9 (2)
C12—C7—C6—C5 179.86 (16) C15—C14—C13—N1 −2.6 (3)
C8—C7—C6—C1 −178.93 (16) C5—C4—C16—O1 −176.38 (18)
C12—C7—C6—C1 0.36 (17) C3—C4—C16—O1 2.3 (3)
C6—C5—C4—C3 −0.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.58 3.489 (3) 166
C5—H5···O2ii 0.93 2.54 3.332 (2) 143

Symmetry codes: (i) −x+3/2, y+1/2, −z+5/2; (ii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5316).

References

  1. Hong, Y. P., Liao, J. Y., Fu, J. L., Kuang, D. B., Meier, H., Su, C. Y. & Cao, D. R. (2012). Dyes Pigm. 94, 481–489.
  2. Koyuncua, F. B., Koyuncub, S. & Ozdemira, E. (2011). Synth. Met. 161, 1005–1013.
  3. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  4. Samanta, A., Saha, S. & Fessenden, R. W. (2001). J. Phys. Chem. A, 105, 5438–5441.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, J. J., Zhang, X., Zhang, B. Q., Wang, G. & Yu, X. Q. (2008). Acta Cryst. E64, o1293.
  7. Zhang, F. F., Gan, L. L. & Zhou, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881–1884. [DOI] [PubMed]
  8. Zhao, B.-H., Zhu, X.-F., Guan, S. & Li, D.-F. (2012). Acta Cryst. E68, o2026. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203190X/cv5316sup1.cif

e-68-o2517-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203190X/cv5316Isup2.hkl

e-68-o2517-Isup2.hkl (139.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203190X/cv5316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES