Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 21;68(Pt 8):o2520. doi: 10.1107/S1600536812032369

3,4,6-Tri-O-acetyl-1,2-[(S)-ethyl­idene]-β-d-mannopyran­ose

Henok H Kinfe a, Felix L Makolo a, Zanele Phasha a, Alfred Muller a,*
PMCID: PMC3414970  PMID: 22904957

Abstract

In the title compound, C14H20O9, the six-membered pyran and the five-membered dioxalane rings adopt chair and twisted conformations, respectively. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions.

Related literature  

For orthogonal protection in carbohydrate chemistry, see: Wuts & Greene (2007); Betaneli et al. (1982). For background to the synthetic methodology, see: Doores et al. (2010). For ring puckering analysis, see: Cremer & Pople (1975). graphic file with name e-68-o2520-scheme1.jpg

Experimental  

Crystal data  

  • C14H20O9

  • M r = 332.3

  • Orthorhombic, Inline graphic

  • a = 7.0494 (3) Å

  • b = 14.6994 (7) Å

  • c = 15.3608 (7) Å

  • V = 1591.72 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.01 mm−1

  • T = 100 K

  • 0.16 × 0.16 × 0.12 mm

Data collection  

  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.856, T max = 0.889

  • 23454 measured reflections

  • 2701 independent reflections

  • 2684 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.085

  • S = 1.20

  • 2701 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983), 1110 Friedel Pairs

  • Flack parameter: 0.06 (15)

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032369/xu5592sup1.cif

e-68-o2520-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032369/xu5592Isup2.hkl

e-68-o2520-Isup2.hkl (130KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O3i 0.98 2.55 3.511 (2) 167
C8—H8⋯O7i 1.00 2.49 3.317 (2) 140
C12—H12A⋯O4ii 0.98 2.56 3.469 (2) 154
C12—H12B⋯O1iii 0.98 2.51 3.460 (2) 163
C14—H14B⋯O9iv 0.98 2.53 3.361 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged.

supplementary crystallographic information

Comment

Ethylidene acetals are important functional groups for orthogonal protection in carbohydrate chemistry (Wuts & Greene, 2007; Betaneli et al., 1982). The title compound is a key intermediate for the preparation of polysaccharides which exhibit strong activity against the HIV-1 virus (Doores et al., 2010). Herein, we report the crystal structure of 3,4,6-tri-O-acetyl-1,2-O-[S-ethylidene] -β-D-mannopyranoside to confirm its absolute configuration.

The title compound C14H20O9 (see Fig. 1, and Scheme 1) crystallizes in the P212121 (Z = 4) space group. Puckering analysis confirms the twisted conformation of the five membered dioxalane ring, with puckering parameter values of q2 = 0.347 (3) Å, and φ2 = 61.9 (4)°; and that of the six membered pyran chair conformation ring as q2 = 0.163 (3) Å, q3 = -0.526 (3) Å, Q = 0.550 (3) Å and φ2 = 253.3 (9)° (see Cremer & Pople, 1975). The dioxalane ring is twisted on C6–C7.

The molecules are linked by C-H···O interactions (see Table 1).

Experimental

A solution of 2,3,4,6-tetra-O-acetyl -α-D-mannopyranosyl bromide (150 mg, 0.36 mmol) in acetonitrile (3 ml) was treated with sodium boron hydride (250 mg, 6.61 mmol) and the reaction mixture was stirred at room temperature for 12 h. The mixture was then diluted with chloroform and washed with water three times. The organic layer was dried over anhydrous Na2SO4, filtered and evaporated in vacuo to give an oil. The oily residue was crashed with methanol to afford 70% of the target compound as white crystals.

Analytical data: mp: 108-110 °C (Lit. 113-115 °C; Betaneli et al., 1982); 1H NMR (CDCl3, 400 MHz): δ 5.40-5.10 (m, 4H), 4.31-4.03 (m, 3H), 3.72-3.64 (m, 1H), 2.09 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.51 (d, J = 4.8 Hz, 3H); 13C NMR (CDCl3, 400 MHz): δ 170.7, 170.3, 169.5, 104.8, 96.5, 71.6, 70.6, 66.0, 62.5, 21.6, 20.7, 20.7.

Refinement

All hydrogen atoms were positioned in geometrically idealized positions with C–H = 1.00 Å (methine), 0.99 Å (methylene), and 0.98 Å (methyl). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as a fixed rotor. The D enantiomer refined to a final Flack parameter of 0.06 (15). The highest residual electron density of 0.50 e.Å-3 is 0.93 Å from H14B.

Figures

Fig. 1.

Fig. 1.

A view of (1). Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H20O9 F(000) = 704
Mr = 332.3 Dx = 1.387 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 9727 reflections
a = 7.0494 (3) Å θ = 6.5–65.8°
b = 14.6994 (7) Å µ = 1.01 mm1
c = 15.3608 (7) Å T = 100 K
V = 1591.72 (12) Å3 Cube, colourless
Z = 4 0.16 × 0.16 × 0.12 mm

Data collection

Bruker APEX DUO 4K-CCD diffractometer 2701 independent reflections
Radiation source: Incoatec IµS microfocus X-ray source 2684 reflections with I > 2σ(I)
Incoatec Quazar Multilayer Mirror monochromator Rint = 0.028
Detector resolution: 8.4 pixels mm-1 θmax = 66.2°, θmin = 4.2°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −16→14
Tmin = 0.856, Tmax = 0.889 l = −18→17
23454 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3436P] where P = (Fo2 + 2Fc2)/3
S = 1.20 (Δ/σ)max = 0.001
2701 reflections Δρmax = 0.26 e Å3
212 parameters Δρmin = −0.31 e Å3
0 restraints Absolute structure: Flack (1983), 1110 Friedel Pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.06 (15)

Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 4548 frames were collected with a frame width of 1° covering up to θ = 66.21° with 97.7% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1916 (3) 0.55884 (11) 0.36854 (11) 0.0238 (4)
H1A 0.0905 0.5131 0.3687 0.036*
H1B 0.2086 0.5828 0.4276 0.036*
H1C 0.3102 0.5309 0.3487 0.036*
C2 0.1392 (2) 0.63445 (10) 0.30873 (10) 0.0191 (3)
C3 0.2253 (2) 0.78379 (10) 0.26420 (10) 0.0182 (3)
H3 0.085 0.7938 0.2623 0.022*
C4 0.3175 (2) 0.86302 (10) 0.30997 (10) 0.0181 (3)
H4 0.4551 0.8504 0.3202 0.022*
C5 0.2937 (2) 0.94827 (11) 0.25454 (10) 0.0199 (3)
H5 0.156 0.9571 0.2413 0.024*
C6 0.3204 (2) 0.86280 (11) 0.12195 (10) 0.0200 (3)
H6 0.1988 0.8811 0.0933 0.024*
C7 0.2989 (2) 0.77323 (10) 0.17178 (10) 0.0195 (3)
H7 0.2167 0.7302 0.1384 0.023*
C8 0.5782 (3) 0.76982 (12) 0.09524 (12) 0.0275 (4)
H8 0.5843 0.7181 0.053 0.033*
C9 0.7739 (3) 0.80202 (14) 0.11606 (13) 0.0346 (4)
H9A 0.7676 0.8491 0.1611 0.052*
H9B 0.8325 0.8273 0.0635 0.052*
H9C 0.85 0.7508 0.1372 0.052*
C10 0.3704 (2) 1.03347 (11) 0.29613 (11) 0.0214 (4)
H10A 0.3591 1.0852 0.2552 0.026*
H10B 0.2967 1.048 0.3492 0.026*
C11 0.6193 (2) 1.03193 (10) 0.40213 (11) 0.0203 (4)
C12 0.8252 (3) 1.01153 (13) 0.41372 (11) 0.0258 (4)
H12A 0.8696 1.038 0.4686 0.039*
H12B 0.8971 1.0378 0.3652 0.039*
H12C 0.8441 0.9455 0.4149 0.039*
C13 0.3177 (2) 0.85697 (10) 0.46588 (11) 0.0208 (3)
C14 0.1957 (3) 0.87231 (12) 0.54383 (11) 0.0274 (4)
H14A 0.267 0.857 0.5966 0.041*
H14B 0.0827 0.8337 0.54 0.041*
H14C 0.1573 0.9363 0.5461 0.041*
O1 0.00432 (18) 0.63631 (8) 0.26050 (8) 0.0251 (3)
O2 0.26442 (16) 0.70374 (7) 0.31509 (7) 0.0192 (2)
O3 0.39448 (16) 0.93390 (8) 0.17474 (8) 0.0213 (3)
O4 0.46022 (18) 0.84164 (8) 0.06055 (8) 0.0251 (3)
O5 0.48923 (17) 0.74080 (7) 0.17374 (8) 0.0234 (3)
O6 0.56740 (16) 1.01897 (7) 0.31844 (7) 0.0202 (3)
O7 0.51158 (18) 1.05559 (8) 0.45868 (8) 0.0249 (3)
O8 0.22067 (16) 0.87679 (7) 0.39160 (7) 0.0201 (3)
O9 0.47936 (18) 0.83119 (8) 0.46649 (8) 0.0265 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0263 (9) 0.0187 (8) 0.0263 (8) −0.0010 (7) 0.0026 (7) 0.0042 (7)
C2 0.0200 (8) 0.0172 (8) 0.0200 (8) −0.0019 (6) 0.0034 (7) −0.0019 (6)
C3 0.0178 (7) 0.0158 (7) 0.0210 (7) −0.0010 (6) −0.0022 (6) 0.0033 (6)
C4 0.0179 (7) 0.0177 (8) 0.0186 (7) 0.0006 (6) 0.0005 (6) 0.0012 (6)
C5 0.0192 (7) 0.0181 (8) 0.0224 (8) 0.0014 (6) −0.0036 (6) 0.0007 (6)
C6 0.0210 (8) 0.0197 (8) 0.0192 (8) −0.0022 (6) −0.0015 (6) 0.0008 (6)
C7 0.0197 (8) 0.0170 (7) 0.0216 (7) 0.0000 (6) −0.0008 (7) 0.0005 (6)
C8 0.0314 (9) 0.0222 (8) 0.0290 (9) 0.0041 (7) 0.0065 (8) 0.0050 (7)
C9 0.0309 (10) 0.0329 (10) 0.0399 (10) 0.0006 (8) 0.0032 (8) 0.0091 (8)
C10 0.0198 (8) 0.0186 (8) 0.0259 (8) 0.0014 (6) −0.0065 (7) 0.0008 (7)
C11 0.0275 (9) 0.0128 (7) 0.0207 (8) −0.0017 (7) −0.0031 (7) 0.0031 (7)
C12 0.0243 (9) 0.0293 (9) 0.0238 (8) −0.0009 (7) −0.0044 (7) 0.0016 (7)
C13 0.0247 (9) 0.0147 (8) 0.0229 (8) −0.0006 (6) −0.0043 (7) −0.0007 (6)
C14 0.0315 (9) 0.0283 (9) 0.0222 (8) 0.0003 (8) −0.0005 (7) −0.0040 (7)
O1 0.0234 (6) 0.0225 (6) 0.0294 (6) −0.0049 (5) −0.0047 (5) 0.0021 (5)
O2 0.0208 (6) 0.0158 (5) 0.0210 (5) −0.0030 (4) −0.0030 (4) 0.0039 (4)
O3 0.0246 (6) 0.0186 (5) 0.0208 (5) −0.0046 (5) −0.0017 (5) 0.0019 (5)
O4 0.0271 (6) 0.0229 (6) 0.0254 (6) 0.0029 (5) 0.0053 (5) 0.0057 (5)
O5 0.0241 (6) 0.0202 (5) 0.0259 (6) 0.0051 (5) 0.0051 (5) 0.0060 (5)
O6 0.0199 (6) 0.0203 (5) 0.0204 (5) −0.0003 (4) −0.0039 (5) −0.0014 (5)
O7 0.0286 (6) 0.0242 (6) 0.0219 (6) 0.0031 (5) 0.0011 (5) −0.0005 (5)
O8 0.0200 (6) 0.0218 (5) 0.0186 (5) 0.0022 (5) −0.0007 (5) −0.0005 (4)
O9 0.0257 (7) 0.0287 (6) 0.0250 (6) 0.0050 (5) −0.0056 (5) −0.0003 (5)

Geometric parameters (Å, º)

C1—C2 1.489 (2) C8—O5 1.425 (2)
C1—H1A 0.98 C8—O4 1.446 (2)
C1—H1B 0.98 C8—C9 1.493 (3)
C1—H1C 0.98 C8—H8 1
C2—O1 1.206 (2) C9—H9A 0.98
C2—O2 1.3514 (19) C9—H9B 0.98
C3—O2 1.4394 (18) C9—H9C 0.98
C3—C4 1.508 (2) C10—O6 1.4461 (19)
C3—C7 1.520 (2) C10—H10A 0.99
C3—H3 1 C10—H10B 0.99
C4—O8 1.4420 (19) C11—O7 1.205 (2)
C4—C5 1.524 (2) C11—O6 1.350 (2)
C4—H4 1 C11—C12 1.493 (2)
C5—O3 1.433 (2) C12—H12A 0.98
C5—C10 1.506 (2) C12—H12B 0.98
C5—H5 1 C12—H12C 0.98
C6—O4 1.399 (2) C13—O9 1.201 (2)
C6—O3 1.422 (2) C13—O8 1.3620 (19)
C6—C7 1.530 (2) C13—C14 1.492 (2)
C6—H6 1 C14—H14A 0.98
C7—O5 1.424 (2) C14—H14B 0.98
C7—H7 1 C14—H14C 0.98
C2—C1—H1A 109.5 O4—C8—C9 112.28 (15)
C2—C1—H1B 109.5 O5—C8—H8 109.9
H1A—C1—H1B 109.5 O4—C8—H8 109.9
C2—C1—H1C 109.5 C9—C8—H8 109.9
H1A—C1—H1C 109.5 C8—C9—H9A 109.5
H1B—C1—H1C 109.5 C8—C9—H9B 109.5
O1—C2—O2 122.85 (14) H9A—C9—H9B 109.5
O1—C2—C1 126.29 (15) C8—C9—H9C 109.5
O2—C2—C1 110.86 (13) H9A—C9—H9C 109.5
O2—C3—C4 107.19 (12) H9B—C9—H9C 109.5
O2—C3—C7 110.99 (12) O6—C10—C5 108.84 (13)
C4—C3—C7 111.54 (13) O6—C10—H10A 109.9
O2—C3—H3 109 C5—C10—H10A 109.9
C4—C3—H3 109 O6—C10—H10B 109.9
C7—C3—H3 109 C5—C10—H10B 109.9
O8—C4—C3 108.04 (12) H10A—C10—H10B 108.3
O8—C4—C5 108.55 (12) O7—C11—O6 123.81 (15)
C3—C4—C5 109.08 (12) O7—C11—C12 125.78 (16)
O8—C4—H4 110.4 O6—C11—C12 110.40 (14)
C3—C4—H4 110.4 C11—C12—H12A 109.5
C5—C4—H4 110.4 C11—C12—H12B 109.5
O3—C5—C10 107.89 (13) H12A—C12—H12B 109.5
O3—C5—C4 107.58 (12) C11—C12—H12C 109.5
C10—C5—C4 114.01 (13) H12A—C12—H12C 109.5
O3—C5—H5 109.1 H12B—C12—H12C 109.5
C10—C5—H5 109.1 O9—C13—O8 123.42 (15)
C4—C5—H5 109.1 O9—C13—C14 126.07 (16)
O4—C6—O3 106.79 (13) O8—C13—C14 110.51 (14)
O4—C6—C7 102.44 (12) C13—C14—H14A 109.5
O3—C6—C7 112.54 (12) C13—C14—H14B 109.5
O4—C6—H6 111.5 H14A—C14—H14B 109.5
O3—C6—H6 111.5 C13—C14—H14C 109.5
C7—C6—H6 111.5 H14A—C14—H14C 109.5
O5—C7—C3 109.66 (13) H14B—C14—H14C 109.5
O5—C7—C6 101.86 (12) C2—O2—C3 116.85 (12)
C3—C7—C6 114.39 (13) C6—O3—C5 114.45 (12)
O5—C7—H7 110.2 C6—O4—C8 108.62 (12)
C3—C7—H7 110.2 C7—O5—C8 107.27 (12)
C6—C7—H7 110.2 C11—O6—C10 117.71 (13)
O5—C8—O4 106.08 (13) C13—O8—C4 117.42 (12)
O5—C8—C9 108.69 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1C···O3i 0.98 2.55 3.511 (2) 167
C8—H8···O7i 1.00 2.49 3.317 (2) 140
C12—H12A···O4ii 0.98 2.56 3.469 (2) 154
C12—H12B···O1iii 0.98 2.51 3.460 (2) 163
C14—H14B···O9iv 0.98 2.53 3.361 (2) 142

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+3/2, −y+2, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5592).

References

  1. Betaneli, V. I., Ovchinnikov, M. V., Bakinovskii, L. V. & Kochetkov, N. K. (1982). Carbohydr. Res. 107, 285–291.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). SADABS, SAINT and XPREP BrukerAXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Doores, K. J., Fulton, Z., Hong, V., Patel, M. K., Scanlan, C. N., Wormald, M. R., Finn, M. G., Burton, D. R., Wilson, I. A. & Davis, B. G. (2010). Proc. Natl Acad. Sci. USA, 102, 13372–13377. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wuts, P. G. W. & Greene, T. W. (2007). Protective Groups in Organic Synthesis, 4th ed. New Jersey: Wiley.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032369/xu5592sup1.cif

e-68-o2520-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032369/xu5592Isup2.hkl

e-68-o2520-Isup2.hkl (130KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES