Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 21;68(Pt 8):o2521. doi: 10.1107/S1600536812032655

1,3-Dibenzyl­imidazolidine-2-thione

Anna Mietlarek-Kropidłowska a,*, Jaroslaw Chojnacki a, Barbara Becker a
PMCID: PMC3414971  PMID: 22904958

Abstract

In the title compound, C17H18N2S, the imidazolidine ring adopts a twisted conformation. In the crystal, mol­ecules are linked by slipped π–π inter­actions between the benzene rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.903 (2) Å].

Related literature  

For background information and the synthesis of related compounds, see: Savjani & Gajjar (2011); Wazeer et al. (2007); Zhivotova et al. (2006); Jayaram et al. (2008). For ring-puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o2521-scheme1.jpg

Experimental  

Crystal data  

  • C17H18N2S

  • M r = 282.39

  • Monoclinic, Inline graphic

  • a = 14.8492 (8) Å

  • b = 10.2284 (5) Å

  • c = 10.1314 (6) Å

  • β = 107.131 (6)°

  • V = 1470.53 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 120 K

  • 0.45 × 0.15 × 0.03 mm

Data collection  

  • Oxford Xcalibur Sapphire2 diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.938, T max = 0.993

  • 5840 measured reflections

  • 2890 independent reflections

  • 2148 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.092

  • S = 0.94

  • 2890 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032655/lx2257sup1.cif

e-68-o2521-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032655/lx2257Isup2.hkl

e-68-o2521-Isup2.hkl (139KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032655/lx2257Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The research was supported by grants from the Polish Ministry of Education and Science (grant Nos. NN204 543339 and NN204 150237).

supplementary crystallographic information

Comment

2-Imidazolidinethione derivatives exhibit applications in diverse therapeutic areas such as antimicrobial activity (Wazeer et al., 2007). Moreover, 2-imidazolidinethiones are also used as a chiral auxiliary and ligands for asymmetric catalysis (Savjani & Gajjar, 2011). Herein, we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the imidazolidine ring has twisted (T, i.e. half-chair) conformation. In the crystal structure (Fig. 2), molecules are connected by slipped π–π interactions between the benzene rings of neighbouring molecules, with a Cg–Cgi distance of 3.903 (2) Å and an interplanar distance of 3.595 (2) Å resulting in a slippage of 1.519 Å (Cg is the centroid of the C5–C10 benzene ring).

The volume 1470.53 (14) Å3 as well as the number of molecules in the elemental cell (Z = 4) of 1,3-dibenzylimidazolidine-2-thione match the values determined for closely related 1,3-dibenzyl-1H-imidazole-2(3H)-thione (Jayaram et al., 2008). These molecules differ in their 5-membered ring being either aromatic or aliphatic. Nevertheless any closer comparison of the bond lengths and angles between these two compounds is difficult due to the lack of atomic coordinates for 1,3-dibenzyl-1H-imidazole-2(3H)-thione either in the above mentioned paper or in Cambridge Structural Database. The 5-membered imidazolidine ring in the present structure adopts the conformation which is most closely described as half-chair or twisted (T) on C2—C3. Parameter Q2 (Cremer & Pople, 1975), which specifies the puckering amplitude and thus differentiate planar from non-planar systems, is significantly greater than zero 0.1565 (16) Å and φ2 parameter is 301.2 (6)° pointing to the mentioned T type of pucker.

Experimental

The title compound was synthesized according to the procedure reported by Zhivotova et al. (2006). The reaction was carried out between N,N'-dibenzylethylenediamine and carbon disulfide in the presence of KOH (molar ratio 1:1:1) in methanol. The mixture was stirred 50 min, filtered and then left for crystallization at 278 K. After a week yellowish needle-like crystals were appeared. These were filtered off and dried. The melting point was determined to be 393 K.

Refinement

All of the C-bonded hydrogen atoms were placed in the calculated positions (aromatic: dCH = 0.95 Å, methylene: dCH = 0.99 Å) and were treated as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the π–π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. Cg is the centroid of the C5–C10 benzene ring. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

Crystal data

C17H18N2S F(000) = 600
Mr = 282.39 Dx = 1.276 Mg m3
Monoclinic, P21/c Melting point: 393 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 14.8492 (8) Å Cell parameters from 3149 reflections
b = 10.2284 (5) Å θ = 2.9–28.3°
c = 10.1314 (6) Å µ = 0.21 mm1
β = 107.131 (6)° T = 120 K
V = 1470.53 (14) Å3 Needle, light yellow
Z = 4 0.45 × 0.15 × 0.03 mm

Data collection

Oxford Xcalibur Sapphire2 diffractometer 2890 independent reflections
Graphite monochromator 2148 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1 Rint = 0.020
ω scans θmax = 26°, θmin = 2.9°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) h = −17→18
Tmin = 0.938, Tmax = 0.993 k = −11→12
5840 measured reflections l = −11→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0605P)2] where P = (Fo2 + 2Fc2)/3
2890 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.06996 (8) 0.45939 (12) 0.28050 (13) 0.0281 (3)
N2 0.20826 (8) 0.36922 (12) 0.37091 (13) 0.0268 (3)
S1 0.11232 (3) 0.27228 (4) 0.12140 (4) 0.03308 (14)
C1 0.13043 (10) 0.36852 (14) 0.26067 (15) 0.0233 (3)
C2 0.20697 (11) 0.47669 (16) 0.46506 (17) 0.0334 (4)
H2A 0.2501 0.5478 0.4565 0.04*
H2B 0.2246 0.4464 0.5621 0.04*
C3 0.10445 (11) 0.52096 (16) 0.41609 (17) 0.0335 (4)
H3A 0.0692 0.4899 0.4791 0.04*
H3B 0.0997 0.6174 0.4088 0.04*
C4 0.28837 (10) 0.28334 (16) 0.38936 (18) 0.0329 (4)
H4A 0.2685 0.2064 0.3284 0.039*
H4B 0.3081 0.2515 0.4859 0.039*
C5 0.37268 (10) 0.34615 (14) 0.35870 (16) 0.0270 (3)
C6 0.46349 (11) 0.30853 (16) 0.43384 (18) 0.0338 (4)
H6 0.4721 0.246 0.5059 0.041*
C7 0.54126 (11) 0.36151 (16) 0.40445 (19) 0.0388 (4)
H7 0.6028 0.3343 0.4555 0.047*
C8 0.52966 (11) 0.45327 (17) 0.30165 (19) 0.0388 (4)
H8 0.5832 0.49 0.2824 0.047*
C9 0.43962 (12) 0.49221 (17) 0.22599 (18) 0.0365 (4)
H9 0.4314 0.5558 0.1551 0.044*
C10 0.36144 (11) 0.43758 (16) 0.25455 (16) 0.0328 (4)
H10 0.2999 0.4634 0.202 0.039*
C11 −0.02190 (10) 0.48742 (16) 0.18592 (18) 0.0341 (4)
H11A −0.0199 0.4689 0.0909 0.041*
H11B −0.0345 0.582 0.1912 0.041*
C12 −0.10361 (10) 0.41236 (14) 0.21001 (15) 0.0234 (3)
C13 −0.09255 (10) 0.31025 (14) 0.30325 (15) 0.0259 (3)
H13 −0.0311 0.2852 0.3572 0.031*
C14 −0.17071 (11) 0.24423 (15) 0.31840 (17) 0.0317 (4)
H14 −0.1623 0.1741 0.3824 0.038*
C15 −0.26067 (11) 0.27991 (17) 0.24095 (18) 0.0360 (4)
H15 −0.3141 0.2351 0.2517 0.043*
C17 −0.27181 (10) 0.38191 (17) 0.14751 (17) 0.0358 (4)
H17 −0.3333 0.4069 0.0939 0.043*
C18 −0.19466 (10) 0.44741 (15) 0.13154 (16) 0.0285 (4)
H18 −0.2034 0.5169 0.0668 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0252 (6) 0.0280 (7) 0.0329 (8) −0.0007 (5) 0.0113 (5) −0.0046 (6)
N2 0.0244 (6) 0.0293 (7) 0.0257 (7) −0.0010 (5) 0.0059 (5) −0.0015 (6)
S1 0.0371 (2) 0.0336 (2) 0.0283 (2) −0.00352 (17) 0.00927 (17) −0.00815 (18)
C1 0.0240 (7) 0.0229 (7) 0.0252 (8) −0.0053 (6) 0.0109 (6) 0.0004 (6)
C2 0.0391 (9) 0.0360 (9) 0.0276 (9) −0.0154 (7) 0.0139 (7) −0.0060 (7)
C3 0.0452 (10) 0.0290 (8) 0.0328 (9) −0.0040 (7) 0.0214 (8) −0.0040 (7)
C4 0.0266 (8) 0.0317 (9) 0.0375 (9) 0.0010 (7) 0.0050 (7) 0.0085 (8)
C5 0.0265 (8) 0.0245 (8) 0.0288 (9) 0.0006 (6) 0.0064 (6) −0.0026 (6)
C6 0.0293 (8) 0.0303 (9) 0.0384 (10) 0.0034 (7) 0.0044 (7) 0.0008 (7)
C7 0.0237 (8) 0.0355 (10) 0.0542 (12) 0.0050 (7) 0.0066 (7) −0.0051 (9)
C8 0.0305 (9) 0.0398 (10) 0.0509 (11) −0.0061 (7) 0.0196 (8) −0.0116 (8)
C9 0.0388 (9) 0.0378 (10) 0.0348 (10) −0.0027 (7) 0.0138 (7) 0.0011 (8)
C10 0.0270 (8) 0.0373 (9) 0.0321 (9) 0.0003 (7) 0.0057 (7) 0.0012 (7)
C11 0.0282 (8) 0.0341 (9) 0.0418 (10) 0.0062 (7) 0.0133 (7) 0.0128 (8)
C12 0.0254 (7) 0.0228 (7) 0.0236 (8) 0.0029 (6) 0.0095 (6) −0.0034 (6)
C13 0.0267 (8) 0.0257 (8) 0.0252 (8) 0.0032 (6) 0.0076 (6) 0.0006 (6)
C14 0.0406 (9) 0.0279 (8) 0.0294 (9) −0.0035 (7) 0.0145 (7) −0.0003 (7)
C15 0.0310 (8) 0.0375 (9) 0.0433 (10) −0.0097 (7) 0.0167 (7) −0.0102 (8)
C17 0.0242 (8) 0.0425 (10) 0.0371 (10) 0.0022 (7) 0.0036 (7) −0.0073 (8)
C18 0.0316 (8) 0.0291 (8) 0.0241 (8) 0.0052 (7) 0.0072 (6) −0.0008 (7)

Geometric parameters (Å, º)

N1—C1 1.3479 (18) C7—H7 0.95
N1—C11 1.446 (2) C8—C9 1.389 (2)
N1—C3 1.460 (2) C8—H8 0.95
N2—C1 1.3501 (19) C9—C10 1.393 (2)
N2—C4 1.4459 (18) C9—H9 0.95
N2—C2 1.4591 (19) C10—H10 0.95
S1—C1 1.6759 (15) C11—C12 1.515 (2)
C2—C3 1.524 (2) C11—H11A 0.99
C2—H2A 0.99 C11—H11B 0.99
C2—H2B 0.99 C12—C13 1.385 (2)
C3—H3A 0.99 C12—C18 1.398 (2)
C3—H3B 0.99 C13—C14 1.390 (2)
C4—C5 1.518 (2) C13—H13 0.95
C4—H4A 0.99 C14—C15 1.384 (2)
C4—H4B 0.99 C14—H14 0.95
C5—C10 1.383 (2) C15—C17 1.385 (2)
C5—C6 1.393 (2) C15—H15 0.95
C6—C7 1.385 (2) C17—C18 1.377 (2)
C6—H6 0.95 C17—H17 0.95
C7—C8 1.375 (3) C18—H18 0.95
C1—N1—C11 125.29 (13) C6—C7—H7 119.9
C1—N1—C3 111.91 (12) C7—C8—C9 119.96 (15)
C11—N1—C3 122.62 (13) C7—C8—H8 120
C1—N2—C4 125.09 (13) C9—C8—H8 120
C1—N2—C2 111.84 (12) C8—C9—C10 119.72 (16)
C4—N2—C2 122.81 (12) C8—C9—H9 120.1
N1—C1—N2 108.57 (13) C10—C9—H9 120.1
N1—C1—S1 125.58 (12) C5—C10—C9 120.59 (14)
N2—C1—S1 125.84 (11) C5—C10—H10 119.7
N2—C2—C3 102.42 (12) C9—C10—H10 119.7
N2—C2—H2A 111.3 N1—C11—C12 115.89 (13)
C3—C2—H2A 111.3 N1—C11—H11A 108.3
N2—C2—H2B 111.3 C12—C11—H11A 108.3
C3—C2—H2B 111.3 N1—C11—H11B 108.3
H2A—C2—H2B 109.2 C12—C11—H11B 108.3
N1—C3—C2 102.60 (12) H11A—C11—H11B 107.4
N1—C3—H3A 111.2 C13—C12—C18 118.78 (13)
C2—C3—H3A 111.2 C13—C12—C11 123.52 (13)
N1—C3—H3B 111.2 C18—C12—C11 117.68 (13)
C2—C3—H3B 111.2 C12—C13—C14 120.44 (14)
H3A—C3—H3B 109.2 C12—C13—H13 119.8
N2—C4—C5 114.39 (12) C14—C13—H13 119.8
N2—C4—H4A 108.7 C15—C14—C13 120.48 (15)
C5—C4—H4A 108.7 C15—C14—H14 119.8
N2—C4—H4B 108.7 C13—C14—H14 119.8
C5—C4—H4B 108.7 C14—C15—C17 119.14 (14)
H4A—C4—H4B 107.6 C14—C15—H15 120.4
C10—C5—C6 118.92 (14) C17—C15—H15 120.4
C10—C5—C4 121.38 (13) C18—C17—C15 120.70 (14)
C6—C5—C4 119.67 (14) C18—C17—H17 119.7
C7—C6—C5 120.57 (16) C15—C17—H17 119.7
C7—C6—H6 119.7 C17—C18—C12 120.46 (14)
C5—C6—H6 119.7 C17—C18—H18 119.8
C8—C7—C6 120.24 (15) C12—C18—H18 119.8
C8—C7—H7 119.9
C11—N1—C1—N2 −179.34 (13) C5—C6—C7—C8 0.8 (3)
C3—N1—C1—N2 −4.12 (17) C6—C7—C8—C9 −0.6 (3)
C11—N1—C1—S1 1.4 (2) C7—C8—C9—C10 −0.2 (3)
C3—N1—C1—S1 176.58 (11) C6—C5—C10—C9 −0.6 (2)
C4—N2—C1—N1 178.56 (12) C4—C5—C10—C9 −178.66 (15)
C2—N2—C1—N1 −7.22 (16) C8—C9—C10—C5 0.8 (2)
C4—N2—C1—S1 −2.2 (2) C1—N1—C11—C12 91.76 (18)
C2—N2—C1—S1 172.08 (10) C3—N1—C11—C12 −82.97 (18)
C1—N2—C2—C3 14.63 (16) N1—C11—C12—C13 −8.5 (2)
C4—N2—C2—C3 −170.99 (13) N1—C11—C12—C18 172.64 (13)
C1—N1—C3—C2 12.79 (16) C18—C12—C13—C14 −0.1 (2)
C11—N1—C3—C2 −171.84 (13) C11—C12—C13—C14 −178.92 (14)
N2—C2—C3—N1 −15.51 (14) C12—C13—C14—C15 −0.3 (2)
C1—N2—C4—C5 101.77 (17) C13—C14—C15—C17 0.3 (2)
C2—N2—C4—C5 −71.85 (19) C14—C15—C17—C18 −0.1 (2)
N2—C4—C5—C10 −35.3 (2) C15—C17—C18—C12 −0.3 (2)
N2—C4—C5—C6 146.64 (14) C13—C12—C18—C17 0.4 (2)
C10—C5—C6—C7 −0.2 (2) C11—C12—C18—C17 179.26 (15)
C4—C5—C6—C7 177.88 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2257).

References

  1. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Jayaram, P. N., Roy, G. & Mugesh, G. (2008). J. Chem. Sci. 120, 143–154.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  6. Savjani, J. K. & Gajjar, A. K. (2011). Pak. J. Biol. Sci. 14, 1076–1089. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725–1730.
  9. Zhivotova, T. S., Gazaliev, A. M., Fazylov, S. D., Aitpaeva, Z. K. & Turdybekov, D. M. (2006). Zh. Org. Khim. 42, 448–450.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032655/lx2257sup1.cif

e-68-o2521-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032655/lx2257Isup2.hkl

e-68-o2521-Isup2.hkl (139KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032655/lx2257Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES