Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 25;68(Pt 8):o2522–o2523. doi: 10.1107/S1600536812032643

(1S,3R)-3-Isobutyl-2,3-dihydro­spiro[benzo[f]isoindole-1,3′-indoline]-2′,4,9-trione methanol monosolvate

Garima Sharma a,b, S Vasanth Kumar a, Habibah A Wahab b,c,, Mohd Mustaqim Rosli d, Hoong-Kun Fun d,*,§
PMCID: PMC3414972  PMID: 22904959

Abstract

In the title compound, C23H20N2O3·CH3OH, the hexa­hydro-1H-benzo[f]isoindole and indoline rings are planar, with maximum deviations of 0.092 (1) and −0.095 (1) Å, respectively. The dihedral angle between these two rings is 88.03 (4)°. An O—H⋯N inter­action links the main mol­ecule and the methanol solvent mol­ecule. An intra­molecular C—H⋯O inter­action forms an S(6) ring motif. In the crystal, the mol­ecules form two-dimensional layers parallel to the bc plane through N—H⋯O and C—H⋯O inter­actions.

Related literature  

For biological activities of naphtho­quinones, see: Babula et al. (2007). For detailed literature on naphtho­quinone chemistry, see: Chen et al. (2011); Silva et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2522-scheme1.jpg

Experimental  

Crystal data  

  • C23H20N2O3·CH4O

  • M r = 404.45

  • Monoclinic, Inline graphic

  • a = 10.8485 (2) Å

  • b = 11.9605 (2) Å

  • c = 16.5705 (3) Å

  • β = 111.246 (1)°

  • V = 2003.95 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.32 × 0.20 × 0.11 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.971, T max = 0.990

  • 23197 measured reflections

  • 5871 independent reflections

  • 4460 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.135

  • S = 1.03

  • 5871 reflections

  • 286 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032643/xu5595sup1.cif

e-68-o2522-sup1.cif (31.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032643/xu5595Isup2.hkl

e-68-o2522-Isup2.hkl (287.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032643/xu5595Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.903 (19) 2.249 (19) 3.1410 (16) 169.7 (17)
N2—H1N2⋯O4ii 0.89 (2) 1.97 (2) 2.8346 (18) 165 (2)
O4—H1O4⋯N1 0.93 (3) 1.88 (3) 2.8085 (18) 174 (2)
C13—H13B⋯O1 0.99 2.56 3.1919 (18) 121
C19—H19A⋯O3i 0.95 2.57 3.3368 (18) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HAW gratefully acknowledges the Malaysian Ministry of Science, Technology and Innovation for funding for the synthesis work (grant Nos. 09-05-lfn-meb-004 and 304/PFARMASI/650545/I121). GS and SVK thank the management and administration of Karunya University for their encouragement and support. HKF thanks USM for a Research University grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Naphthoquinones are known to possess various biological activities such as cyto-toxicity as well as antibacterial, antifungal, antiviral, insecticidal, anti-inflammatory, and antipyretic (Babula et al., 2007) properties. Recently, there have been a few efforts to conduct 1,3-cycloaddition involving naphthoquinones (Chen et al., 2011; Silva et al., 2002).

In the title compound, Fig. 1, the hexahydro-1H-benzo[f]isoindole (N1/C1–C12) and indoline (N2/C10/C17–C23) rings are planar with the maximum deviations of 0.092 (1) Å from atom N1 and -0.095 (1) Å from atom C10. The two rings make a dihedral angle of 88.03 (4)°. An O4—H1O4···N1 interaction links the main molecule with the methanol solvent molecule. An intramolecular interaction of C13—H13B···O1 forms an S(6) ring motif (Fig. 1).

In the crystal, the molecules form two-dimensional layers parallel to the bc-plane through the intermolecular interactions of N1—H1N1···O2i, N2—H1N2···O4ii and C19—H19A···O3i (Fig. 2).

Experimental

A mixture of isatin (0.147 g, 1 mmol), L-leucine (0.131 g, 1 mmol) and 1,4-napthoquinone (0.158 g, 1 mmol) was refluxed in methanol (6 ml) until the disappearance of the starting material (monitored by thin layer chromatography, TLC). After standing for 1 h, the product of the reaction mixture was washed with cool water (2 × 25 ml) and cool ethanol (2 × 0.5 ml). The crude product was recrystallized from appropriate solvent to afford pure product (90% yield).

Refinement

N-bound H atoms were located from a difference Fourier map and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Crystal data

C23H20N2O3·CH4O F(000) = 856
Mr = 404.45 Dx = 1.341 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7290 reflections
a = 10.8485 (2) Å θ = 2.6–30.1°
b = 11.9605 (2) Å µ = 0.09 mm1
c = 16.5705 (3) Å T = 100 K
β = 111.246 (1)° Block, brown
V = 2003.95 (6) Å3 0.32 × 0.20 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5871 independent reflections
Radiation source: fine-focus sealed tube 4460 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
φ and ω scans θmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→14
Tmin = 0.971, Tmax = 0.990 k = −14→16
23197 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.9585P] where P = (Fo2 + 2Fc2)/3
5871 reflections (Δ/σ)max < 0.001
286 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09694 (11) 0.90322 (10) 0.51378 (7) 0.0300 (3)
O2 0.56629 (10) 1.07980 (8) 0.70838 (7) 0.0186 (2)
O3 0.35764 (11) 1.07705 (9) 0.83896 (7) 0.0235 (2)
N1 0.33921 (12) 0.82889 (10) 0.78597 (8) 0.0160 (2)
N2 0.56151 (12) 1.00095 (10) 0.91874 (8) 0.0187 (3)
C1 0.40186 (14) 1.06328 (11) 0.56677 (9) 0.0159 (3)
C2 0.46388 (15) 1.13840 (12) 0.52980 (9) 0.0187 (3)
H2A 0.5469 1.1698 0.5640 0.022*
C3 0.40491 (16) 1.16770 (12) 0.44316 (10) 0.0219 (3)
H3A 0.4469 1.2198 0.4183 0.026*
C4 0.28436 (16) 1.12071 (13) 0.39287 (10) 0.0234 (3)
H4A 0.2450 1.1399 0.3334 0.028*
C5 0.22110 (16) 1.04605 (13) 0.42882 (9) 0.0218 (3)
H5A 0.1385 1.0146 0.3940 0.026*
C6 0.27860 (14) 1.01691 (11) 0.51630 (9) 0.0179 (3)
C7 0.20717 (15) 0.93985 (12) 0.55492 (9) 0.0198 (3)
C8 0.27704 (14) 0.90981 (12) 0.64722 (9) 0.0172 (3)
C9 0.22425 (14) 0.83749 (12) 0.70212 (9) 0.0170 (3)
H9A 0.1503 0.8777 0.7122 0.020*
C10 0.44298 (13) 0.91165 (11) 0.78621 (9) 0.0146 (3)
C11 0.39672 (14) 0.95085 (11) 0.69362 (9) 0.0155 (3)
C12 0.46506 (14) 1.03460 (11) 0.66010 (9) 0.0148 (3)
C13 0.17636 (14) 0.72159 (12) 0.66517 (9) 0.0177 (3)
H13A 0.2508 0.6815 0.6570 0.021*
H13B 0.1061 0.7307 0.6074 0.021*
C14 0.12248 (14) 0.64910 (12) 0.72118 (10) 0.0184 (3)
H14A 0.1887 0.6484 0.7817 0.022*
C15 −0.00825 (16) 0.69353 (14) 0.72296 (12) 0.0297 (4)
H15A −0.0398 0.6443 0.7587 0.044*
H15B −0.0738 0.6957 0.6639 0.044*
H15C 0.0048 0.7691 0.7475 0.044*
C16 0.10456 (16) 0.52942 (13) 0.68612 (11) 0.0238 (3)
H16A 0.0629 0.4839 0.7183 0.036*
H16B 0.1911 0.4977 0.6929 0.036*
H16C 0.0482 0.5300 0.6246 0.036*
C17 0.44567 (14) 1.00939 (12) 0.84967 (9) 0.0170 (3)
C18 0.58027 (13) 0.86393 (11) 0.82701 (9) 0.0151 (3)
C19 0.64232 (14) 0.77902 (12) 0.79995 (9) 0.0182 (3)
H19A 0.6009 0.7448 0.7450 0.022*
C20 0.76752 (15) 0.74465 (13) 0.85537 (10) 0.0223 (3)
H20A 0.8126 0.6872 0.8376 0.027*
C21 0.82649 (15) 0.79390 (14) 0.93626 (11) 0.0252 (3)
H21A 0.9106 0.7680 0.9737 0.030*
C22 0.76496 (15) 0.88039 (13) 0.96365 (10) 0.0232 (3)
H22A 0.8056 0.9140 1.0189 0.028*
C23 0.64231 (14) 0.91542 (12) 0.90724 (9) 0.0172 (3)
O4 0.31230 (12) 0.84323 (11) 0.94796 (8) 0.0309 (3)
C24 0.1798 (2) 0.8342 (2) 0.93687 (13) 0.0425 (5)
H24A 0.1507 0.7567 0.9226 0.064*
H24B 0.1274 0.8835 0.8896 0.064*
H24C 0.1676 0.8561 0.9905 0.064*
H1N1 0.3759 (17) 0.7609 (16) 0.7870 (11) 0.021 (4)*
H1N2 0.587 (2) 1.0493 (17) 0.9621 (13) 0.031 (5)*
H1O4 0.317 (2) 0.842 (2) 0.8928 (17) 0.056 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0248 (6) 0.0283 (6) 0.0245 (6) −0.0059 (5) −0.0059 (5) 0.0056 (5)
O2 0.0176 (5) 0.0176 (5) 0.0178 (5) −0.0019 (4) 0.0029 (4) −0.0001 (4)
O3 0.0241 (6) 0.0198 (5) 0.0255 (6) 0.0038 (4) 0.0076 (5) −0.0032 (4)
N1 0.0158 (6) 0.0149 (6) 0.0149 (5) −0.0019 (4) 0.0027 (5) −0.0005 (4)
N2 0.0202 (6) 0.0187 (6) 0.0149 (6) −0.0024 (5) 0.0036 (5) −0.0056 (5)
C1 0.0193 (7) 0.0131 (6) 0.0137 (6) 0.0038 (5) 0.0042 (5) −0.0008 (5)
C2 0.0237 (7) 0.0154 (7) 0.0175 (7) 0.0014 (5) 0.0078 (6) −0.0017 (5)
C3 0.0307 (8) 0.0182 (7) 0.0188 (7) 0.0041 (6) 0.0114 (6) 0.0035 (5)
C4 0.0309 (8) 0.0223 (7) 0.0152 (7) 0.0071 (6) 0.0060 (6) 0.0032 (5)
C5 0.0246 (7) 0.0191 (7) 0.0163 (7) 0.0037 (6) 0.0009 (6) −0.0003 (5)
C6 0.0212 (7) 0.0138 (6) 0.0155 (6) 0.0036 (5) 0.0028 (5) −0.0003 (5)
C7 0.0207 (7) 0.0150 (6) 0.0176 (7) 0.0002 (5) −0.0004 (6) 0.0002 (5)
C8 0.0180 (7) 0.0141 (6) 0.0157 (6) 0.0005 (5) 0.0018 (5) 0.0005 (5)
C9 0.0148 (6) 0.0164 (6) 0.0165 (6) −0.0011 (5) 0.0017 (5) −0.0002 (5)
C10 0.0151 (6) 0.0139 (6) 0.0126 (6) −0.0014 (5) 0.0024 (5) −0.0011 (5)
C11 0.0176 (6) 0.0136 (6) 0.0130 (6) 0.0012 (5) 0.0026 (5) 0.0000 (5)
C12 0.0166 (6) 0.0118 (6) 0.0145 (6) 0.0020 (5) 0.0040 (5) −0.0006 (5)
C13 0.0155 (6) 0.0171 (7) 0.0168 (6) −0.0019 (5) 0.0013 (5) −0.0012 (5)
C14 0.0161 (6) 0.0182 (7) 0.0189 (7) −0.0016 (5) 0.0039 (5) −0.0015 (5)
C15 0.0235 (8) 0.0269 (8) 0.0410 (10) −0.0014 (6) 0.0146 (7) −0.0059 (7)
C16 0.0257 (8) 0.0176 (7) 0.0269 (8) −0.0032 (6) 0.0080 (6) −0.0015 (6)
C17 0.0194 (7) 0.0145 (6) 0.0172 (6) −0.0024 (5) 0.0066 (6) −0.0010 (5)
C18 0.0156 (6) 0.0142 (6) 0.0144 (6) −0.0005 (5) 0.0043 (5) 0.0025 (5)
C19 0.0203 (7) 0.0163 (7) 0.0190 (7) −0.0016 (5) 0.0085 (6) 0.0020 (5)
C20 0.0215 (7) 0.0187 (7) 0.0298 (8) 0.0030 (6) 0.0130 (6) 0.0069 (6)
C21 0.0166 (7) 0.0272 (8) 0.0285 (8) 0.0015 (6) 0.0043 (6) 0.0110 (6)
C22 0.0198 (7) 0.0275 (8) 0.0172 (7) −0.0036 (6) 0.0004 (6) 0.0033 (6)
C23 0.0180 (7) 0.0174 (7) 0.0152 (6) −0.0026 (5) 0.0048 (5) 0.0019 (5)
O4 0.0261 (6) 0.0436 (7) 0.0229 (6) −0.0067 (5) 0.0087 (5) −0.0121 (5)
C24 0.0354 (10) 0.0640 (14) 0.0313 (10) −0.0139 (9) 0.0161 (8) −0.0126 (9)

Geometric parameters (Å, º)

O1—C7 1.2231 (18) C11—C12 1.470 (2)
O2—C12 1.2254 (17) C13—C14 1.532 (2)
O3—C17 1.2147 (18) C13—H13A 0.9900
N1—C9 1.4969 (18) C13—H13B 0.9900
N1—C10 1.4979 (18) C14—C15 1.525 (2)
N1—H1N1 0.902 (19) C14—C16 1.531 (2)
N2—C17 1.3627 (19) C14—H14A 1.0000
N2—C23 1.4043 (19) C15—H15A 0.9800
N2—H1N2 0.88 (2) C15—H15B 0.9800
C1—C2 1.391 (2) C15—H15C 0.9800
C1—C6 1.409 (2) C16—H16A 0.9800
C1—C12 1.4870 (19) C16—H16B 0.9800
C2—C3 1.388 (2) C16—H16C 0.9800
C2—H2A 0.9500 C18—C19 1.380 (2)
C3—C4 1.390 (2) C18—C23 1.3969 (19)
C3—H3A 0.9500 C19—C20 1.398 (2)
C4—C5 1.386 (2) C19—H19A 0.9500
C4—H4A 0.9500 C20—C21 1.390 (2)
C5—C6 1.3989 (19) C20—H20A 0.9500
C5—H5A 0.9500 C21—C22 1.393 (2)
C6—C7 1.490 (2) C21—H21A 0.9500
C7—C8 1.484 (2) C22—C23 1.385 (2)
C8—C11 1.3395 (19) C22—H22A 0.9500
C8—C9 1.510 (2) O4—C24 1.386 (2)
C9—C13 1.528 (2) O4—H1O4 0.93 (3)
C9—H9A 1.0000 C24—H24A 0.9800
C10—C11 1.5059 (19) C24—H24B 0.9800
C10—C18 1.5072 (19) C24—H24C 0.9800
C10—C17 1.5656 (19)
C9—N1—C10 109.25 (11) C14—C13—H13A 108.6
C9—N1—H1N1 107.0 (11) C9—C13—H13B 108.6
C10—N1—H1N1 105.6 (12) C14—C13—H13B 108.6
C17—N2—C23 111.78 (12) H13A—C13—H13B 107.5
C17—N2—H1N2 123.9 (13) C15—C14—C16 110.01 (13)
C23—N2—H1N2 123.9 (13) C15—C14—C13 112.09 (13)
C2—C1—C6 119.98 (13) C16—C14—C13 108.85 (12)
C2—C1—C12 119.52 (13) C15—C14—H14A 108.6
C6—C1—C12 120.48 (13) C16—C14—H14A 108.6
C3—C2—C1 120.22 (14) C13—C14—H14A 108.6
C3—C2—H2A 119.9 C14—C15—H15A 109.5
C1—C2—H2A 119.9 C14—C15—H15B 109.5
C2—C3—C4 119.93 (15) H15A—C15—H15B 109.5
C2—C3—H3A 120.0 C14—C15—H15C 109.5
C4—C3—H3A 120.0 H15A—C15—H15C 109.5
C5—C4—C3 120.53 (14) H15B—C15—H15C 109.5
C5—C4—H4A 119.7 C14—C16—H16A 109.5
C3—C4—H4A 119.7 C14—C16—H16B 109.5
C4—C5—C6 120.12 (14) H16A—C16—H16B 109.5
C4—C5—H5A 119.9 C14—C16—H16C 109.5
C6—C5—H5A 119.9 H16A—C16—H16C 109.5
C5—C6—C1 119.20 (14) H16B—C16—H16C 109.5
C5—C6—C7 119.56 (13) O3—C17—N2 127.52 (13)
C1—C6—C7 121.22 (12) O3—C17—C10 125.24 (13)
O1—C7—C8 121.25 (14) N2—C17—C10 107.21 (12)
O1—C7—C6 122.55 (13) C19—C18—C23 120.68 (13)
C8—C7—C6 116.20 (12) C19—C18—C10 130.70 (13)
C11—C8—C7 121.98 (14) C23—C18—C10 108.48 (12)
C11—C8—C9 111.37 (12) C18—C19—C20 118.38 (14)
C7—C8—C9 126.57 (12) C18—C19—H19A 120.8
N1—C9—C8 103.19 (11) C20—C19—H19A 120.8
N1—C9—C13 110.95 (11) C21—C20—C19 120.48 (15)
C8—C9—C13 115.22 (12) C21—C20—H20A 119.8
N1—C9—H9A 109.1 C19—C20—H20A 119.8
C8—C9—H9A 109.1 C20—C21—C22 121.43 (14)
C13—C9—H9A 109.1 C20—C21—H21A 119.3
N1—C10—C11 103.32 (10) C22—C21—H21A 119.3
N1—C10—C18 111.75 (11) C23—C22—C21 117.46 (14)
C11—C10—C18 119.03 (12) C23—C22—H22A 121.3
N1—C10—C17 109.04 (11) C21—C22—H22A 121.3
C11—C10—C17 111.72 (11) C22—C23—C18 121.51 (14)
C18—C10—C17 101.93 (11) C22—C23—N2 128.54 (14)
C8—C11—C12 123.34 (12) C18—C23—N2 109.95 (12)
C8—C11—C10 111.50 (13) C24—O4—H1O4 106.8 (15)
C12—C11—C10 124.73 (12) O4—C24—H24A 109.5
O2—C12—C11 120.62 (12) O4—C24—H24B 109.5
O2—C12—C1 122.93 (13) H24A—C24—H24B 109.5
C11—C12—C1 116.40 (12) O4—C24—H24C 109.5
C9—C13—C14 114.79 (12) H24A—C24—H24C 109.5
C9—C13—H13A 108.6 H24B—C24—H24C 109.5
C6—C1—C2—C3 −0.2 (2) C10—C11—C12—O2 −1.2 (2)
C12—C1—C2—C3 −178.75 (13) C8—C11—C12—C1 −7.1 (2)
C1—C2—C3—C4 −0.9 (2) C10—C11—C12—C1 −178.98 (12)
C2—C3—C4—C5 1.1 (2) C2—C1—C12—O2 5.0 (2)
C3—C4—C5—C6 −0.3 (2) C6—C1—C12—O2 −173.59 (13)
C4—C5—C6—C1 −0.8 (2) C2—C1—C12—C11 −177.33 (13)
C4—C5—C6—C7 177.73 (14) C6—C1—C12—C11 4.10 (19)
C2—C1—C6—C5 1.0 (2) N1—C9—C13—C14 63.48 (16)
C12—C1—C6—C5 179.55 (13) C8—C9—C13—C14 −179.76 (12)
C2—C1—C6—C7 −177.48 (13) C9—C13—C14—C15 69.24 (16)
C12—C1—C6—C7 1.1 (2) C9—C13—C14—C16 −168.83 (12)
C5—C6—C7—O1 −2.5 (2) C23—N2—C17—O3 −177.45 (15)
C1—C6—C7—O1 175.95 (15) C23—N2—C17—C10 4.59 (16)
C5—C6—C7—C8 177.82 (13) N1—C10—C17—O3 −67.24 (18)
C1—C6—C7—C8 −3.7 (2) C11—C10—C17—O3 46.32 (19)
O1—C7—C8—C11 −178.74 (15) C18—C10—C17—O3 174.49 (14)
C6—C7—C8—C11 0.9 (2) N1—C10—C17—N2 110.78 (13)
O1—C7—C8—C9 −2.3 (2) C11—C10—C17—N2 −135.65 (13)
C6—C7—C8—C9 177.34 (13) C18—C10—C17—N2 −7.49 (14)
C10—N1—C9—C8 11.53 (14) N1—C10—C18—C19 67.08 (19)
C10—N1—C9—C13 135.47 (12) C11—C10—C18—C19 −53.3 (2)
C11—C8—C9—N1 −7.48 (16) C17—C10—C18—C19 −176.60 (14)
C7—C8—C9—N1 175.79 (13) N1—C10—C18—C23 −108.46 (13)
C11—C8—C9—C13 −128.56 (13) C11—C10—C18—C23 131.21 (13)
C7—C8—C9—C13 54.71 (19) C17—C10—C18—C23 7.86 (14)
C9—N1—C10—C11 −11.27 (14) C23—C18—C19—C20 1.1 (2)
C9—N1—C10—C18 −140.42 (12) C10—C18—C19—C20 −173.99 (14)
C9—N1—C10—C17 107.68 (12) C18—C19—C20—C21 1.1 (2)
C7—C8—C11—C12 4.6 (2) C19—C20—C21—C22 −1.7 (2)
C9—C8—C11—C12 −172.30 (13) C20—C21—C22—C23 0.2 (2)
C7—C8—C11—C10 177.44 (13) C21—C22—C23—C18 2.0 (2)
C9—C8—C11—C10 0.53 (17) C21—C22—C23—N2 −179.06 (14)
N1—C10—C11—C8 6.65 (15) C19—C18—C23—C22 −2.7 (2)
C18—C10—C11—C8 131.18 (13) C10—C18—C23—C22 173.37 (13)
C17—C10—C11—C8 −110.43 (14) C19—C18—C23—N2 178.20 (13)
N1—C10—C11—C12 179.36 (12) C10—C18—C23—N2 −5.73 (16)
C18—C10—C11—C12 −56.11 (18) C17—N2—C23—C22 −178.43 (15)
C17—C10—C11—C12 62.28 (18) C17—N2—C23—C18 0.59 (17)
C8—C11—C12—O2 170.65 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2i 0.903 (19) 2.249 (19) 3.1410 (16) 169.7 (17)
N2—H1N2···O4ii 0.89 (2) 1.97 (2) 2.8346 (18) 165 (2)
O4—H1O4···N1 0.93 (3) 1.88 (3) 2.8085 (18) 174 (2)
C13—H13B···O1 0.99 2.56 3.1919 (18) 121
C19—H19A···O3i 0.95 2.57 3.3368 (18) 138

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5595).

References

  1. Babula, P., Adam, V., Havel, L. & Kizek, R. (2007). Ceska Slov. Farm. 56, 114–20. [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, H., Wang, S.-Y., Xu, X.-P. & Ji, S.-J. (2011). Synth. Commun. 41, 3280–3288.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Silva, A. M. G., Tomé, A. C., Neves, M. G. P. M. S., Silva, A. M. S. & Cavaleiro, J. A. S. (2002). J. Org. Chem. 67, 726–732. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032643/xu5595sup1.cif

e-68-o2522-sup1.cif (31.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032643/xu5595Isup2.hkl

e-68-o2522-Isup2.hkl (287.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032643/xu5595Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES