Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 25;68(Pt 8):o2529. doi: 10.1107/S1600536812032588

2-Anilino-4-(1,3-benzothia­zol-2-yl)-5-(4-chloro­benzo­yl)thio­phene-3-carbonitrile

Hoong-Kun Fun a,*,, Tze Shyang Chia a, Hatem A Abdel-Aziz b
PMCID: PMC3414976  PMID: 22904963

Abstract

In the title compound, C25H14ClN3OS2, the central thio­phene ring [maximum deviation = 0.011 (1) Å] makes dihedral angles of 55.72 (5), 13.36 (5) and 46.77 (4)° with the adjacent chloro-substituted benzene ring, the benzene ring and the 1,3-benzothia­zole ring system [maximum deviation = 0.012 (1) Å], respectively. An intra­molecular C—H⋯S(thienyl) hydrogen bond generates an S(6) ring motif in the mol­ecule. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds into inversion dimers and the dimers are further connected by C—H⋯O hydrogen bonds into tapes running along [100]. Aromatic π–π stacking inter­actions are also observed [centroid-to-centroid distances = 3.6116 (6) and 3.7081 (6) Å].

Related literature  

For background to the chemistry and biological activity of thio­phenes, see: Fun et al. (2012); Abdel-Aziz et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2529-scheme1.jpg

Experimental  

Crystal data  

  • C25H14ClN3OS2

  • M r = 471.96

  • Triclinic, Inline graphic

  • a = 6.9469 (2) Å

  • b = 7.6722 (3) Å

  • c = 20.9874 (7) Å

  • α = 91.519 (1)°

  • β = 97.577 (1)°

  • γ = 107.791 (1)°

  • V = 1053.15 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.31 × 0.27 × 0.19 mm

Data collection  

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.884, T max = 0.929

  • 27413 measured reflections

  • 7637 independent reflections

  • 6820 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.083

  • S = 1.04

  • 7637 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032588/hb6899sup1.cif

e-68-o2529-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032588/hb6899Isup2.hkl

e-68-o2529-Isup2.hkl (373.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032588/hb6899Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.862 (15) 2.163 (15) 2.9558 (12) 152.7 (13)
C17—H17A⋯O1ii 0.95 2.60 3.3496 (14) 136
C24—H24A⋯S2 0.95 2.49 3.1719 (9) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for funding and facilities.

supplementary crystallographic information

Comment

In continuation to our interest in the chemistry of thiophenes (Fun et al., 2012; Abdel-Aziz et al., 2012), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The molecule consists of a thiophene ring (A) [S2/C8–C11; maximum deviation = 0.011 (1) Å at atoms S2 and C11], a chloro-substituted benzene ring (B) [C13–C18], a benzene ring (C) [C19–C24] and a benzo[d]thiazole ring system (D) [S1/N1/C1–C7; maximum deviation = 0.012 (1) Å at atom C7]. The dihedral angles between the mean planes of the rings are A/B = 55.72 (5)°, A/C = 13.36 (5)°, A/D = 46.77 (4)°, B/C = 67.90 (5)°, B/D = 23.99 (4)° and C/D = 60.11 (4)°. An intramolecular C24—H24A···S2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule.

In the crystal (Fig. 2), molecules are linked by pairs of N3—H1N3···N2 hydrogen bonds into inversion dimers and the dimers are further connected by C17—H17A···O1 hydrogen bond into tapes, running along the a-axis. π–π interactions are also observed with Cg1···Cg3 = 3.6116 (6) Å [symmetry code = x, y, z] and Cg2···Cg4 = 3.7081 (6) Å [symmetry code = -x, -y, -z], where Cg1, Cg2, Cg3 and Cg4 are the centroids of S1/C6/C1/N1/C7, S2/C8–C11, C13–C18 and C19–C24 rings, respectively.

Experimental

To a stirred solution of potassium hydroxide (0.56 g, 10 mmol) in dimethylformamide (20 ml), 3-(benzo[d]thiazol-2-yl)-3-oxopropanenitrile (0.2 g, 1 mmol) was added. After heating at 100°C for 10 min, phenyl isothiocyanate (0.135 g, 1 mmol) was added to the resulting mixture and the heating was continued for another 10 min, then 2-chloro-1-(4-chlorophenyl)ethanone (0.189 g, 1 mmol) was added. After the addition, the reaction mixture was heated at 100°C for 15 min. The precipitated product was filtered off, washed with water and dried. Crystallization from DMF afforded the title compound. Colourless blocks were formed after slow evaporation of DMF after one month.

Refinement

The N-bound H atom was located in a difference Fourier map and refined freely [N3—H1N3 = 0.864 (16) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C). Four outliers, (001), (026), (210) and (132) were omitted in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids. The dashed line represents the intramolecular C—H···S hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C25H14ClN3OS2 Z = 2
Mr = 471.96 F(000) = 484
Triclinic, P1 Dx = 1.488 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9469 (2) Å Cell parameters from 9847 reflections
b = 7.6722 (3) Å θ = 2.9–32.6°
c = 20.9874 (7) Å µ = 0.40 mm1
α = 91.519 (1)° T = 100 K
β = 97.577 (1)° Block, colourless
γ = 107.791 (1)° 0.31 × 0.27 × 0.19 mm
V = 1053.15 (6) Å3

Data collection

Bruker APEX DUO CCD diffractometer 7637 independent reflections
Radiation source: fine-focus sealed tube 6820 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.884, Tmax = 0.929 k = −11→10
27413 measured reflections l = −30→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3666P] where P = (Fo2 + 2Fc2)/3
7637 reflections (Δ/σ)max = 0.001
293 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.67827 (5) 0.27031 (5) 0.480308 (13) 0.03159 (7)
S1 0.70001 (3) 0.52966 (3) 0.221308 (11) 0.01676 (5)
S2 −0.06551 (3) 0.19907 (3) 0.123999 (10) 0.01383 (5)
O1 −0.14999 (11) 0.16428 (11) 0.25836 (4) 0.02145 (15)
N1 0.43041 (12) 0.61590 (11) 0.27982 (4) 0.01415 (13)
N2 0.56707 (13) 0.64723 (13) 0.05915 (4) 0.01993 (16)
N3 0.07913 (11) 0.30630 (11) 0.01040 (4) 0.01366 (13)
C1 0.61873 (14) 0.69007 (13) 0.31835 (4) 0.01479 (15)
C2 0.64997 (16) 0.78959 (14) 0.37781 (5) 0.01997 (18)
H2A 0.5390 0.8118 0.3949 0.024*
C3 0.84704 (17) 0.85469 (15) 0.41095 (5) 0.0243 (2)
H3A 0.8711 0.9229 0.4512 0.029*
C4 1.01158 (16) 0.82196 (16) 0.38628 (5) 0.0242 (2)
H4A 1.1449 0.8690 0.4101 0.029*
C5 0.98442 (15) 0.72275 (15) 0.32796 (5) 0.02089 (18)
H5A 1.0961 0.7000 0.3115 0.025*
C6 0.78522 (14) 0.65718 (13) 0.29421 (4) 0.01608 (16)
C7 0.45180 (13) 0.52813 (12) 0.22864 (4) 0.01309 (14)
C8 0.28097 (13) 0.41925 (12) 0.18064 (4) 0.01252 (14)
C9 0.28442 (13) 0.42981 (12) 0.11329 (4) 0.01245 (14)
C10 0.10676 (13) 0.31548 (12) 0.07552 (4) 0.01227 (14)
C11 0.10148 (13) 0.29707 (13) 0.19427 (4) 0.01379 (15)
C12 0.03336 (14) 0.23023 (13) 0.25535 (4) 0.01508 (15)
C13 0.19182 (14) 0.23782 (13) 0.31168 (4) 0.01467 (15)
C14 0.16736 (15) 0.29368 (14) 0.37321 (4) 0.01761 (16)
H14A 0.0484 0.3248 0.3793 0.021*
C15 0.31665 (16) 0.30384 (15) 0.42550 (5) 0.02027 (18)
H15A 0.3021 0.3438 0.4673 0.024*
C16 0.48753 (15) 0.25455 (15) 0.41560 (5) 0.01946 (17)
C17 0.51304 (15) 0.19385 (14) 0.35523 (5) 0.01772 (16)
H17A 0.6296 0.1583 0.3496 0.021*
C18 0.36368 (14) 0.18651 (13) 0.30334 (4) 0.01565 (16)
H18A 0.3786 0.1461 0.2616 0.019*
C19 −0.08240 (13) 0.19674 (12) −0.03545 (4) 0.01251 (14)
C20 −0.07628 (14) 0.24323 (13) −0.09960 (4) 0.01489 (15)
H20A 0.0331 0.3427 −0.1098 0.018*
C21 −0.22951 (14) 0.14427 (14) −0.14810 (4) 0.01668 (16)
H21A −0.2250 0.1767 −0.1914 0.020*
C22 −0.39039 (14) −0.00277 (14) −0.13365 (4) 0.01648 (16)
H22A −0.4972 −0.0688 −0.1666 0.020*
C23 −0.39207 (13) −0.05112 (13) −0.07028 (4) 0.01541 (15)
H23A −0.4994 −0.1529 −0.0604 0.018*
C24 −0.23932 (13) 0.04676 (13) −0.02097 (4) 0.01373 (15)
H24A −0.2421 0.0117 0.0221 0.016*
C25 0.44274 (13) 0.55158 (13) 0.08486 (4) 0.01426 (15)
H1N3 0.190 (2) 0.358 (2) −0.0051 (7) 0.026 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.03233 (14) 0.04596 (18) 0.01750 (11) 0.01807 (12) −0.00611 (9) −0.00167 (10)
S1 0.01263 (9) 0.02322 (12) 0.01481 (10) 0.00628 (8) 0.00207 (7) −0.00076 (8)
S2 0.01115 (9) 0.01691 (10) 0.01187 (9) 0.00199 (7) 0.00189 (7) 0.00100 (7)
O1 0.0153 (3) 0.0294 (4) 0.0191 (3) 0.0047 (3) 0.0057 (2) 0.0047 (3)
N1 0.0140 (3) 0.0143 (3) 0.0133 (3) 0.0035 (3) 0.0015 (2) 0.0005 (3)
N2 0.0184 (4) 0.0218 (4) 0.0171 (4) 0.0019 (3) 0.0045 (3) 0.0006 (3)
N3 0.0124 (3) 0.0159 (3) 0.0111 (3) 0.0022 (3) 0.0018 (2) 0.0010 (2)
C1 0.0157 (4) 0.0142 (4) 0.0129 (3) 0.0029 (3) 0.0007 (3) 0.0008 (3)
C2 0.0236 (4) 0.0189 (4) 0.0148 (4) 0.0040 (3) 0.0007 (3) −0.0020 (3)
C3 0.0286 (5) 0.0213 (5) 0.0166 (4) 0.0014 (4) −0.0036 (4) −0.0019 (3)
C4 0.0203 (4) 0.0236 (5) 0.0212 (4) −0.0007 (4) −0.0063 (3) 0.0037 (4)
C5 0.0142 (4) 0.0236 (5) 0.0216 (4) 0.0023 (3) −0.0012 (3) 0.0052 (4)
C6 0.0145 (4) 0.0175 (4) 0.0145 (4) 0.0032 (3) 0.0003 (3) 0.0023 (3)
C7 0.0115 (3) 0.0148 (4) 0.0127 (3) 0.0037 (3) 0.0018 (3) 0.0011 (3)
C8 0.0119 (3) 0.0135 (4) 0.0121 (3) 0.0040 (3) 0.0018 (3) 0.0001 (3)
C9 0.0121 (3) 0.0132 (4) 0.0118 (3) 0.0034 (3) 0.0021 (3) 0.0003 (3)
C10 0.0119 (3) 0.0132 (4) 0.0121 (3) 0.0043 (3) 0.0022 (3) 0.0013 (3)
C11 0.0126 (3) 0.0165 (4) 0.0116 (3) 0.0037 (3) 0.0019 (3) 0.0010 (3)
C12 0.0161 (4) 0.0168 (4) 0.0128 (3) 0.0051 (3) 0.0038 (3) 0.0014 (3)
C13 0.0167 (4) 0.0157 (4) 0.0117 (3) 0.0044 (3) 0.0035 (3) 0.0021 (3)
C14 0.0201 (4) 0.0205 (4) 0.0139 (4) 0.0075 (3) 0.0056 (3) 0.0017 (3)
C15 0.0257 (4) 0.0237 (5) 0.0122 (4) 0.0085 (4) 0.0036 (3) 0.0001 (3)
C16 0.0219 (4) 0.0226 (5) 0.0132 (4) 0.0072 (4) −0.0004 (3) 0.0018 (3)
C17 0.0189 (4) 0.0199 (4) 0.0156 (4) 0.0074 (3) 0.0029 (3) 0.0028 (3)
C18 0.0180 (4) 0.0171 (4) 0.0126 (3) 0.0059 (3) 0.0037 (3) 0.0019 (3)
C19 0.0119 (3) 0.0140 (4) 0.0120 (3) 0.0051 (3) 0.0009 (3) 0.0000 (3)
C20 0.0162 (4) 0.0162 (4) 0.0127 (3) 0.0057 (3) 0.0020 (3) 0.0016 (3)
C21 0.0185 (4) 0.0200 (4) 0.0123 (3) 0.0078 (3) 0.0006 (3) 0.0002 (3)
C22 0.0144 (4) 0.0200 (4) 0.0148 (4) 0.0066 (3) −0.0005 (3) −0.0037 (3)
C23 0.0126 (3) 0.0167 (4) 0.0167 (4) 0.0048 (3) 0.0018 (3) −0.0021 (3)
C24 0.0128 (3) 0.0153 (4) 0.0135 (3) 0.0048 (3) 0.0025 (3) 0.0004 (3)
C25 0.0144 (3) 0.0155 (4) 0.0122 (3) 0.0042 (3) 0.0012 (3) −0.0013 (3)

Geometric parameters (Å, º)

Cl1—C16 1.7418 (10) C9—C10 1.4017 (12)
S1—C6 1.7252 (10) C9—C25 1.4188 (12)
S1—C7 1.7477 (9) C11—C12 1.4754 (12)
S2—C10 1.7266 (9) C12—C13 1.4923 (12)
S2—C11 1.7444 (9) C13—C18 1.3963 (13)
O1—C12 1.2294 (11) C13—C14 1.3975 (12)
N1—C7 1.3016 (11) C14—C15 1.3900 (14)
N1—C1 1.3896 (11) C14—H14A 0.9500
N2—C25 1.1543 (12) C15—C16 1.3895 (14)
N3—C10 1.3517 (11) C15—H15A 0.9500
N3—C19 1.4098 (11) C16—C17 1.3899 (13)
N3—H1N3 0.864 (16) C17—C18 1.3889 (13)
C1—C2 1.4016 (13) C17—H17A 0.9500
C1—C6 1.4086 (13) C18—H18A 0.9500
C2—C3 1.3856 (14) C19—C24 1.3943 (12)
C2—H2A 0.9500 C19—C20 1.4046 (12)
C3—C4 1.4008 (17) C20—C21 1.3876 (12)
C3—H3A 0.9500 C20—H20A 0.9500
C4—C5 1.3839 (16) C21—C22 1.3967 (14)
C4—H4A 0.9500 C21—H21A 0.9500
C5—C6 1.4025 (13) C22—C23 1.3908 (13)
C5—H5A 0.9500 C22—H22A 0.9500
C7—C8 1.4681 (12) C23—C24 1.3940 (12)
C8—C11 1.3817 (12) C23—H23A 0.9500
C8—C9 1.4209 (12) C24—H24A 0.9500
C6—S1—C7 88.99 (4) O1—C12—C13 121.52 (8)
C10—S2—C11 92.36 (4) C11—C12—C13 118.41 (8)
C7—N1—C1 109.85 (8) C18—C13—C14 119.68 (8)
C10—N3—C19 131.28 (8) C18—C13—C12 120.18 (8)
C10—N3—H1N3 112.8 (10) C14—C13—C12 120.13 (8)
C19—N3—H1N3 114.3 (10) C15—C14—C13 120.15 (9)
N1—C1—C2 124.79 (9) C15—C14—H14A 119.9
N1—C1—C6 115.30 (8) C13—C14—H14A 119.9
C2—C1—C6 119.91 (9) C16—C15—C14 118.89 (9)
C3—C2—C1 118.21 (10) C16—C15—H15A 120.6
C3—C2—H2A 120.9 C14—C15—H15A 120.6
C1—C2—H2A 120.9 C15—C16—C17 122.13 (9)
C2—C3—C4 121.36 (10) C15—C16—Cl1 119.51 (7)
C2—C3—H3A 119.3 C17—C16—Cl1 118.35 (8)
C4—C3—H3A 119.3 C18—C17—C16 118.27 (9)
C5—C4—C3 121.52 (9) C18—C17—H17A 120.9
C5—C4—H4A 119.2 C16—C17—H17A 120.9
C3—C4—H4A 119.2 C17—C18—C13 120.84 (8)
C4—C5—C6 117.25 (10) C17—C18—H18A 119.6
C4—C5—H5A 121.4 C13—C18—H18A 119.6
C6—C5—H5A 121.4 C24—C19—C20 119.73 (8)
C5—C6—C1 121.74 (9) C24—C19—N3 124.30 (8)
C5—C6—S1 128.84 (8) C20—C19—N3 115.94 (8)
C1—C6—S1 109.42 (7) C21—C20—C19 120.18 (8)
N1—C7—C8 124.12 (8) C21—C20—H20A 119.9
N1—C7—S1 116.43 (7) C19—C20—H20A 119.9
C8—C7—S1 119.28 (6) C20—C21—C22 120.36 (8)
C11—C8—C9 112.19 (8) C20—C21—H21A 119.8
C11—C8—C7 125.47 (8) C22—C21—H21A 119.8
C9—C8—C7 122.34 (8) C23—C22—C21 119.06 (8)
C10—C9—C25 121.30 (8) C23—C22—H22A 120.5
C10—C9—C8 113.63 (8) C21—C22—H22A 120.5
C25—C9—C8 124.94 (8) C22—C23—C24 121.31 (9)
N3—C10—C9 122.87 (8) C22—C23—H23A 119.3
N3—C10—S2 126.75 (7) C24—C23—H23A 119.3
C9—C10—S2 110.35 (6) C23—C24—C19 119.31 (8)
C8—C11—C12 132.25 (8) C23—C24—H24A 120.3
C8—C11—S2 111.44 (6) C19—C24—H24A 120.3
C12—C11—S2 116.21 (6) N2—C25—C9 177.03 (10)
O1—C12—C11 120.03 (8)
C7—N1—C1—C2 −178.49 (9) C9—C8—C11—C12 175.01 (9)
C7—N1—C1—C6 0.68 (11) C7—C8—C11—C12 −5.01 (16)
N1—C1—C2—C3 179.78 (9) C9—C8—C11—S2 −1.36 (10)
C6—C1—C2—C3 0.65 (15) C7—C8—C11—S2 178.62 (7)
C1—C2—C3—C4 −0.30 (16) C10—S2—C11—C8 1.75 (7)
C2—C3—C4—C5 −0.25 (17) C10—S2—C11—C12 −175.25 (7)
C3—C4—C5—C6 0.44 (16) C8—C11—C12—O1 158.84 (10)
C4—C5—C6—C1 −0.08 (15) S2—C11—C12—O1 −24.93 (12)
C4—C5—C6—S1 −179.66 (8) C8—C11—C12—C13 −23.68 (15)
N1—C1—C6—C5 −179.68 (9) S2—C11—C12—C13 152.55 (7)
C2—C1—C6—C5 −0.46 (14) O1—C12—C13—C18 134.78 (10)
N1—C1—C6—S1 −0.03 (10) C11—C12—C13—C18 −42.66 (13)
C2—C1—C6—S1 179.18 (8) O1—C12—C13—C14 −44.25 (14)
C7—S1—C6—C5 179.18 (10) C11—C12—C13—C14 138.31 (9)
C7—S1—C6—C1 −0.44 (7) C18—C13—C14—C15 2.09 (15)
C1—N1—C7—C8 174.18 (8) C12—C13—C14—C15 −178.87 (9)
C1—N1—C7—S1 −1.05 (10) C13—C14—C15—C16 −1.14 (15)
C6—S1—C7—N1 0.90 (8) C14—C15—C16—C17 −0.60 (16)
C6—S1—C7—C8 −174.57 (7) C14—C15—C16—Cl1 178.87 (8)
N1—C7—C8—C11 −44.54 (14) C15—C16—C17—C18 1.34 (16)
S1—C7—C8—C11 130.56 (8) Cl1—C16—C17—C18 −178.14 (8)
N1—C7—C8—C9 135.44 (10) C16—C17—C18—C13 −0.35 (14)
S1—C7—C8—C9 −49.46 (11) C14—C13—C18—C17 −1.34 (14)
C11—C8—C9—C10 0.11 (11) C12—C13—C18—C17 179.63 (9)
C7—C8—C9—C10 −179.88 (8) C10—N3—C19—C24 −11.48 (15)
C11—C8—C9—C25 175.87 (9) C10—N3—C19—C20 170.28 (9)
C7—C8—C9—C25 −4.11 (14) C24—C19—C20—C21 2.20 (13)
C19—N3—C10—C9 177.25 (9) N3—C19—C20—C21 −179.48 (8)
C19—N3—C10—S2 −4.70 (14) C19—C20—C21—C22 −0.31 (14)
C25—C9—C10—N3 3.59 (14) C20—C21—C22—C23 −1.52 (14)
C8—C9—C10—N3 179.53 (8) C21—C22—C23—C24 1.51 (14)
C25—C9—C10—S2 −174.74 (7) C22—C23—C24—C19 0.36 (13)
C8—C9—C10—S2 1.20 (10) C20—C19—C24—C23 −2.20 (13)
C11—S2—C10—N3 −179.90 (8) N3—C19—C24—C23 179.61 (8)
C11—S2—C10—C9 −1.66 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···N2i 0.862 (15) 2.163 (15) 2.9558 (12) 152.7 (13)
C17—H17A···O1ii 0.95 2.60 3.3496 (14) 136
C24—H24A···S2 0.95 2.49 3.1719 (9) 128

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6899).

References

  1. Abdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o612–o613. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Fun, H.-K., Chantrapromma, S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1510–o1511. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032588/hb6899sup1.cif

e-68-o2529-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032588/hb6899Isup2.hkl

e-68-o2529-Isup2.hkl (373.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032588/hb6899Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES