Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 25;68(Pt 8):o2533. doi: 10.1107/S1600536812011373

Ethyl 7-chloro-1-cyclo­propyl-6-fluoro-8-nitro-4-oxo-1,4-dihydro­quinoline-3-carboxyl­ate

Raed A Al-Qawasmeh a,*
PMCID: PMC3414979  PMID: 22904966

Abstract

In the title compound, C15H12ClFN2O5, mol­ecules are packed in the crystal lattice in a parallel fashion sustained by various C—H⋯O [C⋯O = 3.065 (5)–3.537 (5) Å] and C—H⋯Cl [3.431 (5)–3.735 (4) Å] inter­actions.

Related literature  

For the biological activities of fluoro­quinolone derivatives, see: Li et al. (2000); Mitscher (2005). For the synthesis of the title compound, see: Al-Qawasmeh et al. (2009); Al-Hiari et al. (2006). graphic file with name e-68-o2533-scheme1.jpg

Experimental  

Crystal data  

  • C15H12ClFN2O5

  • M r = 354.72

  • Triclinic, Inline graphic

  • a = 8.2339 (16) Å

  • b = 9.1523 (18) Å

  • c = 10.736 (2) Å

  • α = 85.60 (3)°

  • β = 81.20 (3)°

  • γ = 74.13 (3)°

  • V = 768.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 K

  • 0.96 × 0.35 × 0.21 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.857, T max = 1.000

  • 4468 measured reflections

  • 2713 independent reflections

  • 1617 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.195

  • S = 1.05

  • 2713 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011373/ds2180sup1.cif

e-68-o2533-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011373/ds2180Isup2.hkl

e-68-o2533-Isup2.hkl (133.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011373/ds2180Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.97 2.54 3.489 (4) 167
C14—H14B⋯O1ii 0.97 2.51 3.471 (5) 172
C15—H15A⋯O2iii 0.98 2.58 3.537 (5) 165
C4—H4A⋯O2iv 0.93 2.71 3.065 (5) 104
C13—H13A⋯O4ii 0.97 2.71 3.439 (5) 132
C11—H11A⋯Cl1v 0.97 2.91 3.431 (5) 115
C13—H13A⋯Cl1vi 0.97 2.89 3.735 (4) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The author gratefully acknowledges financial support from the Deanship of Scientific Research at the University of Jordan (grant No. 7/1005/2006). Dr Murad AlDamen is acknowledged for collecting the data.

supplementary crystallographic information

Comment

Fluoroquinolone derivatives have been widely investigated as drugs against bacterial infections. Ciprofloxacine, one derivative of fluoroquinolone, represents one of the most effective antiinfectious drugs currently in clinical use (Li et al., 2000; Mitscher 2005). In the present paper, we describe the title compound, I, which has been synthesized from 2,4,-di chloro-5-fluoro-3-nitrobenzoic acid according to the published literature (Al-Hiari et al., 2006) and (Al-Qawasmeh et al., 2009). The title compound is an important synthetic intermediate for the synthesis of the analogues of the antimicrobial drug ciprofloxcaine. The title molecule crystallizes in the centrosymmetric triclinic space group P-1. In the crystal structure of (I), the molecules are held together by C—H···O [3.065 (5)-3.537 (5) Å] and C—H···Cl [3.431 (5)-3.735 (4) Å] (Table 1).

Experimental

The title compound was synthesized according to the published literature (Al-Hiari et al., 2006) and it has been recrystallized from hot ethanol to produce a yellow crystalline material

Refinement

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc.and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atom was located from difference Fourier syntheses and its position and isotropic displacement parameter refined freely.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. The thermal ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Molecular packing displaying C–H···Cl and C–H···O interactions in the title compound (I).

Crystal data

C15H12ClFN2O5 F(000) = 364
Mr = 354.72 none
Triclinic, P1 Dx = 1.533 Mg m3
Hall symbol: -P 1 Melting point: 438 K
a = 8.2339 (16) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.1523 (18) Å Cell parameters from 1074 reflections
c = 10.736 (2) Å θ = 3.1–29.0°
α = 85.60 (3)° µ = 0.29 mm1
β = 81.20 (3)° T = 291 K
γ = 74.13 (3)° Needle, yellow
V = 768.5 (3) Å3 0.96 × 0.35 × 0.21 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2713 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1617 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 16.0534 pixels mm-1 θmax = 25.0°, θmin = 3.1°
ω scans h = −8→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −8→10
Tmin = 0.857, Tmax = 1.000 l = −12→10
4468 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.0377P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2713 reflections Δρmax = 0.29 e Å3
218 parameters Δρmin = −0.26 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.013 (5)

Special details

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.11 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (CrysAlisPro; Oxford Diffraction, 2009)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc.and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atom was located from difference Fourier syntheses and its position and isotropic displacement parameter refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.12355 (14) 0.02366 (11) 0.15569 (10) 0.0800 (4)
N2 0.4807 (4) −0.2165 (3) −0.2558 (3) 0.0577 (8)
F1 0.1920 (3) 0.2933 (2) 0.0257 (2) 0.0921 (8)
N1 0.2887 (5) −0.2409 (3) 0.0032 (3) 0.0651 (8)
O1 0.5691 (4) 0.1923 (3) −0.3780 (3) 0.0833 (9)
C1 0.3081 (4) −0.0978 (3) −0.0616 (3) 0.0571 (9)
O3 0.1470 (4) −0.2615 (3) 0.0265 (3) 0.0833 (9)
C3 0.2613 (5) 0.1687 (4) −0.0426 (4) 0.0663 (10)
O5 0.8693 (4) −0.2246 (3) −0.5300 (3) 0.0892 (10)
O4 0.8073 (4) 0.0240 (3) −0.5725 (3) 0.0872 (9)
C7 0.5977 (5) −0.2042 (4) −0.3557 (3) 0.0616 (10)
H7A 0.6527 −0.2921 −0.3992 0.074*
O2 0.4183 (4) −0.3294 (3) 0.0328 (3) 0.0830 (9)
C2 0.2348 (4) 0.0321 (4) 0.0076 (3) 0.0611 (9)
C5 0.4362 (4) 0.0483 (4) −0.2238 (3) 0.0572 (9)
C9 0.5534 (5) 0.0667 (4) −0.3412 (4) 0.0607 (9)
C6 0.4075 (4) −0.0917 (3) −0.1800 (3) 0.0544 (9)
C8 0.6428 (5) −0.0756 (4) −0.3988 (3) 0.0615 (10)
C10 0.7786 (5) −0.0812 (4) −0.5092 (4) 0.0673 (10)
C15 0.4290 (5) −0.3592 (4) −0.2387 (4) 0.0669 (11)
H15A 0.4878 −0.4359 −0.1803 0.080*
C4 0.3601 (5) 0.1772 (4) −0.1551 (4) 0.0668 (11)
H4A 0.3768 0.2704 −0.1862 0.080*
C14 0.3847 (5) −0.4180 (4) −0.3509 (4) 0.0797 (13)
H14A 0.4181 −0.5271 −0.3605 0.096*
H14B 0.3885 −0.3580 −0.4292 0.096*
C13 0.2480 (5) −0.3550 (4) −0.2451 (4) 0.0774 (12)
H13A 0.1693 −0.2570 −0.2595 0.093*
H13B 0.1989 −0.4262 −0.1907 0.093*
C11 1.0073 (6) −0.2448 (5) −0.6353 (5) 0.1002 (16)
H11A 0.9628 −0.2012 −0.7124 0.120*
H11B 1.0908 −0.1937 −0.6197 0.120*
C12 1.0855 (8) −0.4041 (6) −0.6479 (6) 0.146 (3)
H12A 1.1749 −0.4193 −0.7182 0.219*
H12B 1.0016 −0.4540 −0.6617 0.219*
H12C 1.1322 −0.4457 −0.5722 0.219*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0797 (8) 0.0847 (8) 0.0611 (7) −0.0052 (6) 0.0105 (5) −0.0156 (5)
N2 0.0693 (19) 0.0411 (14) 0.0518 (19) −0.0083 (13) 0.0134 (15) −0.0013 (12)
F1 0.0937 (18) 0.0661 (13) 0.104 (2) −0.0100 (12) 0.0191 (15) −0.0361 (12)
N1 0.075 (2) 0.0571 (18) 0.053 (2) −0.0090 (17) 0.0059 (17) −0.0042 (14)
O1 0.107 (2) 0.0508 (14) 0.083 (2) −0.0210 (14) 0.0142 (17) 0.0036 (13)
C1 0.057 (2) 0.0463 (18) 0.061 (2) −0.0079 (16) 0.0012 (18) −0.0004 (16)
O3 0.080 (2) 0.0817 (18) 0.079 (2) −0.0246 (16) 0.0223 (16) −0.0017 (15)
C3 0.071 (2) 0.0511 (19) 0.071 (3) −0.0066 (18) 0.001 (2) −0.0195 (18)
O5 0.084 (2) 0.0671 (16) 0.091 (2) −0.0053 (15) 0.0381 (17) −0.0004 (15)
O4 0.089 (2) 0.0769 (17) 0.084 (2) −0.0202 (16) 0.0145 (17) 0.0147 (15)
C7 0.066 (2) 0.0482 (18) 0.056 (2) −0.0011 (17) 0.0079 (19) 0.0019 (16)
O2 0.093 (2) 0.0639 (15) 0.080 (2) −0.0013 (15) −0.0148 (17) 0.0056 (14)
C2 0.054 (2) 0.063 (2) 0.057 (2) −0.0038 (17) 0.0024 (18) −0.0075 (17)
C5 0.061 (2) 0.0502 (18) 0.055 (2) −0.0107 (16) 0.0004 (18) −0.0015 (16)
C9 0.066 (2) 0.0518 (19) 0.059 (2) −0.0126 (17) −0.0004 (19) 0.0021 (16)
C6 0.055 (2) 0.0463 (18) 0.054 (2) −0.0047 (15) 0.0003 (17) −0.0010 (15)
C8 0.064 (2) 0.056 (2) 0.057 (2) −0.0111 (17) 0.0043 (19) 0.0020 (16)
C10 0.067 (2) 0.068 (2) 0.058 (3) −0.012 (2) 0.0045 (19) 0.0027 (19)
C15 0.080 (3) 0.0407 (18) 0.063 (3) −0.0031 (18) 0.017 (2) 0.0002 (16)
C4 0.074 (3) 0.0480 (19) 0.071 (3) −0.0110 (18) 0.004 (2) −0.0055 (17)
C14 0.109 (3) 0.0484 (19) 0.071 (3) −0.021 (2) 0.027 (2) −0.0162 (18)
C13 0.081 (3) 0.057 (2) 0.084 (3) −0.017 (2) 0.023 (2) −0.0202 (19)
C11 0.081 (3) 0.094 (3) 0.096 (4) −0.007 (3) 0.047 (3) 0.001 (3)
C12 0.147 (5) 0.108 (4) 0.131 (5) 0.004 (4) 0.075 (4) −0.005 (4)

Geometric parameters (Å, º)

Cl1—C2 1.716 (4) C5—C6 1.399 (4)
N2—C7 1.347 (4) C5—C9 1.494 (5)
N2—C6 1.396 (4) C9—C8 1.442 (5)
N2—C15 1.471 (4) C8—C10 1.494 (5)
F1—C3 1.345 (4) C15—C14 1.487 (5)
N1—O3 1.218 (4) C15—C13 1.492 (5)
N1—O2 1.220 (4) C15—H15A 0.9800
N1—C1 1.471 (4) C4—H4A 0.9300
O1—C9 1.221 (4) C14—C13 1.498 (5)
C1—C2 1.391 (5) C14—H14A 0.9700
C1—C6 1.408 (5) C14—H14B 0.9700
C3—C4 1.358 (5) C13—H13A 0.9700
C3—C2 1.382 (5) C13—H13B 0.9700
O5—C10 1.336 (5) C11—C12 1.431 (7)
O5—C11 1.459 (5) C11—H11A 0.9700
O4—C10 1.192 (4) C11—H11B 0.9700
C7—C8 1.357 (4) C12—H12A 0.9600
C7—H7A 0.9300 C12—H12B 0.9600
C5—C4 1.384 (5) C12—H12C 0.9600
C7—N2—C6 118.9 (3) N2—C15—C14 117.5 (3)
C7—N2—C15 117.2 (3) N2—C15—C13 119.2 (3)
C6—N2—C15 123.7 (3) C14—C15—C13 60.4 (3)
O3—N1—O2 124.7 (3) N2—C15—H15A 116.1
O3—N1—C1 119.0 (3) C14—C15—H15A 116.1
O2—N1—C1 116.3 (3) C13—C15—H15A 116.1
C2—C1—C6 121.3 (3) C3—C4—C5 120.6 (3)
C2—C1—N1 115.2 (3) C3—C4—H4A 119.7
C6—C1—N1 123.2 (3) C5—C4—H4A 119.7
F1—C3—C4 120.4 (3) C15—C14—C13 60.0 (3)
F1—C3—C2 118.0 (3) C15—C14—H14A 117.8
C4—C3—C2 121.6 (3) C13—C14—H14A 117.8
C10—O5—C11 115.8 (3) C15—C14—H14B 117.8
N2—C7—C8 126.1 (3) C13—C14—H14B 117.8
N2—C7—H7A 116.9 H14A—C14—H14B 114.9
C8—C7—H7A 116.9 C15—C13—C14 59.7 (2)
C3—C2—C1 118.4 (3) C15—C13—H13A 117.8
C3—C2—Cl1 120.0 (3) C14—C13—H13A 117.8
C1—C2—Cl1 121.5 (3) C15—C13—H13B 117.8
C4—C5—C6 120.2 (3) C14—C13—H13B 117.8
C4—C5—C9 116.7 (3) H13A—C13—H13B 114.9
C6—C5—C9 123.1 (3) C12—C11—O5 108.5 (4)
O1—C9—C8 126.4 (3) C12—C11—H11A 110.0
O1—C9—C5 120.5 (3) O5—C11—H11A 110.0
C8—C9—C5 113.1 (3) C12—C11—H11B 110.0
N2—C6—C5 117.9 (3) O5—C11—H11B 110.0
N2—C6—C1 124.2 (3) H11A—C11—H11B 108.4
C5—C6—C1 117.9 (3) C11—C12—H12A 109.5
C7—C8—C9 119.6 (3) C11—C12—H12B 109.5
C7—C8—C10 119.8 (3) H12A—C12—H12B 109.5
C9—C8—C10 120.6 (3) C11—C12—H12C 109.5
O4—C10—O5 122.6 (4) H12A—C12—H12C 109.5
O4—C10—C8 126.8 (4) H12B—C12—H12C 109.5
O5—C10—C8 110.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14A···O1i 0.97 2.54 3.489 (4) 167
C14—H14B···O1ii 0.97 2.51 3.471 (5) 172
C15—H15A···O2iii 0.98 2.58 3.537 (5) 165
C4—H4A···O2iv 0.93 2.71 3.065 (5) 104
C13—H13A···O4ii 0.97 2.71 3.439 (5) 132
C11—H11A···Cl1v 0.97 2.91 3.431 (5) 115
C13—H13A···Cl1vi 0.97 2.89 3.735 (4) 146

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z−1; (iii) −x+1, −y−1, −z; (iv) −x+1, −y, −z; (v) x+1, y, z−1; (vi) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2180).

References

  1. Al-Hiari, Y. H., Khanfar, M. A., Qaisi, A. M., Abu Shuheil, M. Y., Elabadelah, M. M. & Boese, R. (2006). Heterocycles, pp. 1163–1172.
  2. Al-Qawasmeh, R. A., Zahra, J. A., Zani, F., Vicini, P., Boese, B. & El-Abadelah, M. M. (2009). Arkivoc, pp. 322–336.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Li, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231–293. [DOI] [PubMed]
  5. Mitscher, L. A. (2005). Chem. Rev. 105, 559–592. [DOI] [PubMed]
  6. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011373/ds2180sup1.cif

e-68-o2533-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011373/ds2180Isup2.hkl

e-68-o2533-Isup2.hkl (133.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812011373/ds2180Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES