Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 25;68(Pt 8):o2534. doi: 10.1107/S1600536812031650

N-[4-Chloro-3-(trifluoro­meth­yl)phen­yl]-2,2-dimethyl­propanamide

Yu Zhou a, Lili Ren a, Yongyu Lu a, Feng Zhang a, Guoguang Chen a,*
PMCID: PMC3414980  PMID: 22904967

Abstract

In the title compound, C12H13ClF3NO, the C—C—N—C torsion angle between the benzene ring and the pivaloyl group is −33.9 (5)°. In the crystal, molecules are linked via N—H⋯O hydrogen bonds to form chains running parallel to the c axis. Weak van der Waals inter­actions are also observed.

Related literature  

For background information on related compounds, see: Rosenblum et al. (1998); Wang et al. (2009). For a related crystal structure, see: Zhu et al. (2007).graphic file with name e-68-o2534-scheme1.jpg

Experimental  

Crystal data  

  • C12H13ClF3NO

  • M r = 279.68

  • Monoclinic, Inline graphic

  • a = 5.8850 (12) Å

  • b = 21.955 (4) Å

  • c = 10.307 (2) Å

  • β = 104.50 (3)°

  • V = 1289.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.910, T max = 0.969

  • 2599 measured reflections

  • 2364 independent reflections

  • 1477 reflections with I > 2σ(I)

  • R int = 0.052

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.192

  • S = 1.00

  • 2364 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031650/pk2427sup1.cif

e-68-o2534-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031650/pk2427Isup2.hkl

e-68-o2534-Isup2.hkl (116.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031650/pk2427Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O 0.86 2.24 3.041 (4) 155

Acknowledgments

This research work was financially supported by the College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, ‘973’ project (2011CB710803), and the Key Basic Research Program of China, ‘973’ project (2012CB721104).

supplementary crystallographic information

Comment

Ezetimibe is a biologically active molecule, and research has shown it to have the useful property of inhibiting the absorption of cholesterol in the intestine (Rosenblum et al., 1998). As part of our studies into the synthesis of Ezetimibe, the title compound, 4-chloro-3-(trifluoromethyl)-N-pivaloylaniline (I), which is a derivate formed as an intermediate, was synthesized (Wang et al., 2009). In the crystal structure, N—H···O hydrogen bonding interactions (Table 1) link the molecules (Fig. 2) into chains running parallel to the c axis.

Experimental

4-chloro-3-(trifluoromethyl)aniline (C7H5ClF3N, 23.40 g, 0.12 mol) in CH2Cl2 (40 ml) was added to 4-dimethylaminopyridine (C7H10N2, 1.2 g, 0.01 mol), and Et3N (42.3 ml, 0.31 mol) and the reaction was cooled to 273 K. A solution of pivaloyl chloride (C5H9ClO, 14.4 g, 0.12 mol) in CH2Cl2 (150 ml) was added dropwise over 1 h and the mixture was then heated to reflux. After 12 h, H2O and H2SO4 (2 N, 75 ml) were added, the layers were separated, and the organic layer was washed sequentially with NaOH (10%), NaCl (satd) and water. The organic layer was dried over MgSO4 and concentrated to obtain the product as a pure yellow solid (Wang et al., 2009). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanolic solution.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å, for aryl and methylene H-atoms respectively, and 0.86 Å for N—H. The Uiso(H) were included at 1.5Ueq(C) for the methyl groups and 1.2Ueq for all other hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A packing plot of (I), viewed down the a-axis of the unit cell.

Crystal data

C12H13ClF3NO F(000) = 576
Mr = 279.68 Dx = 1.441 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 5.8850 (12) Å θ = 10–13°
b = 21.955 (4) Å µ = 0.32 mm1
c = 10.307 (2) Å T = 293 K
β = 104.50 (3)° Block, colorless
V = 1289.3 (5) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1477 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.052
Graphite monochromator θmax = 25.4°, θmin = 1.9°
ω/2θ scans h = 0→7
Absorption correction: ψ scan (North et al., 1968) k = 0→26
Tmin = 0.910, Tmax = 0.969 l = −12→12
2599 measured reflections 3 standard reflections every 200 reflections
2364 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3
2364 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.8303 (2) 0.49337 (6) 0.12942 (14) 0.0873 (5)
O 0.1944 (5) 0.25926 (12) 0.2729 (2) 0.0647 (8)
N 0.2134 (5) 0.27644 (13) 0.0605 (3) 0.0494 (7)
H0A 0.1632 0.2645 −0.0211 0.059*
F1 0.7046 (6) 0.47123 (13) 0.3967 (3) 0.1021 (10)
C1 0.4957 (8) 0.46500 (17) 0.3095 (4) 0.0639 (11)
F2 0.3471 (6) 0.44832 (12) 0.3808 (3) 0.1073 (11)
C2 0.5006 (6) 0.42126 (16) 0.1992 (3) 0.0483 (9)
F3 0.4298 (5) 0.52091 (10) 0.2663 (3) 0.0797 (8)
C3 0.3567 (6) 0.37039 (15) 0.1826 (3) 0.0474 (9)
H3A 0.2576 0.3643 0.2389 0.057*
C4 0.3598 (6) 0.32856 (15) 0.0826 (3) 0.0444 (8)
C5 0.5033 (7) 0.33915 (17) −0.0024 (3) 0.0540 (9)
H5A 0.5024 0.3120 −0.0718 0.065*
C6 0.6482 (7) 0.38958 (19) 0.0147 (4) 0.0623 (11)
H6A 0.7468 0.3957 −0.0420 0.075*
C7 0.6471 (6) 0.43065 (17) 0.1149 (4) 0.0542 (9)
C8 0.1439 (6) 0.24321 (15) 0.1556 (3) 0.0442 (8)
C9 0.0085 (6) 0.18476 (15) 0.1083 (3) 0.0463 (8)
C10 0.1853 (9) 0.1369 (2) 0.0953 (7) 0.107 (2)
H10A 0.2984 0.1321 0.1798 0.161*
H10B 0.2638 0.1493 0.0284 0.161*
H10C 0.1063 0.0989 0.0694 0.161*
C11 −0.1150 (11) 0.1652 (3) 0.2130 (5) 0.110 (2)
H11A −0.0022 0.1605 0.2976 0.165*
H11B −0.1931 0.1270 0.1872 0.165*
H11C −0.2283 0.1955 0.2210 0.165*
C12 −0.1714 (9) 0.1921 (2) −0.0249 (5) 0.0984 (18)
H12A −0.0938 0.2042 −0.0923 0.148*
H12B −0.2838 0.2226 −0.0166 0.148*
H12C −0.2504 0.1540 −0.0500 0.148*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0823 (8) 0.0705 (8) 0.1155 (10) −0.0271 (6) 0.0370 (7) −0.0055 (7)
O 0.107 (2) 0.0532 (16) 0.0354 (13) −0.0215 (15) 0.0202 (13) −0.0028 (11)
N 0.074 (2) 0.0427 (16) 0.0316 (13) −0.0087 (14) 0.0141 (13) −0.0051 (12)
F1 0.136 (3) 0.078 (2) 0.0703 (16) 0.0004 (17) −0.0147 (17) −0.0234 (14)
C1 0.095 (3) 0.043 (2) 0.055 (2) −0.011 (2) 0.021 (2) −0.0062 (18)
F2 0.196 (3) 0.0666 (17) 0.0886 (18) −0.0380 (19) 0.090 (2) −0.0322 (14)
C2 0.062 (2) 0.0390 (19) 0.0420 (18) 0.0023 (16) 0.0098 (16) 0.0041 (15)
F3 0.105 (2) 0.0383 (13) 0.0994 (18) 0.0013 (12) 0.0319 (15) −0.0087 (12)
C3 0.068 (2) 0.0380 (19) 0.0395 (17) −0.0036 (16) 0.0199 (16) 0.0009 (14)
C4 0.060 (2) 0.0382 (18) 0.0355 (17) 0.0003 (15) 0.0126 (15) 0.0012 (14)
C5 0.074 (2) 0.046 (2) 0.0458 (19) 0.0035 (18) 0.0225 (18) −0.0040 (16)
C6 0.070 (3) 0.060 (2) 0.067 (2) −0.004 (2) 0.035 (2) 0.002 (2)
C7 0.058 (2) 0.043 (2) 0.061 (2) −0.0044 (17) 0.0159 (18) 0.0035 (18)
C8 0.060 (2) 0.0380 (18) 0.0351 (18) 0.0023 (15) 0.0136 (15) 0.0013 (14)
C9 0.057 (2) 0.0368 (18) 0.0441 (18) −0.0022 (15) 0.0118 (15) 0.0005 (15)
C10 0.082 (3) 0.048 (3) 0.186 (6) 0.002 (2) 0.021 (4) −0.032 (3)
C11 0.144 (5) 0.113 (4) 0.088 (3) −0.075 (4) 0.056 (3) −0.027 (3)
C12 0.106 (4) 0.073 (3) 0.090 (3) −0.028 (3) −0.026 (3) 0.009 (3)

Geometric parameters (Å, º)

Cl—C7 1.732 (4) C6—C7 1.372 (5)
O—C8 1.222 (4) C6—H6A 0.9300
N—C8 1.364 (4) C8—C9 1.525 (5)
N—C4 1.416 (4) C9—C11 1.506 (6)
N—H0A 0.8600 C9—C10 1.508 (6)
F1—C1 1.336 (5) C9—C12 1.518 (5)
C1—F2 1.326 (5) C10—H10A 0.9600
C1—F3 1.330 (4) C10—H10B 0.9600
C1—C2 1.494 (5) C10—H10C 0.9600
C2—C7 1.385 (5) C11—H11A 0.9600
C2—C3 1.386 (5) C11—H11B 0.9600
C3—C4 1.384 (4) C11—H11C 0.9600
C3—H3A 0.9300 C12—H12A 0.9600
C4—C5 1.379 (5) C12—H12B 0.9600
C5—C6 1.382 (5) C12—H12C 0.9600
C5—H5A 0.9300
C8—N—C4 126.6 (3) O—C8—N 120.9 (3)
C8—N—H0A 116.7 O—C8—C9 122.5 (3)
C4—N—H0A 116.7 N—C8—C9 116.6 (3)
F2—C1—F3 105.3 (4) C11—C9—C10 109.4 (4)
F2—C1—F1 106.2 (3) C11—C9—C12 109.0 (4)
F3—C1—F1 105.8 (3) C10—C9—C12 109.5 (4)
F2—C1—C2 112.6 (3) C11—C9—C8 108.6 (3)
F3—C1—C2 113.4 (3) C10—C9—C8 107.3 (3)
F1—C1—C2 112.8 (4) C12—C9—C8 113.0 (3)
C7—C2—C3 119.9 (3) C9—C10—H10A 109.5
C7—C2—C1 121.1 (3) C9—C10—H10B 109.5
C3—C2—C1 119.0 (3) H10A—C10—H10B 109.5
C4—C3—C2 120.4 (3) C9—C10—H10C 109.5
C4—C3—H3A 119.8 H10A—C10—H10C 109.5
C2—C3—H3A 119.8 H10B—C10—H10C 109.5
C5—C4—C3 119.0 (3) C9—C11—H11A 109.5
C5—C4—N 118.6 (3) C9—C11—H11B 109.5
C3—C4—N 122.3 (3) H11A—C11—H11B 109.5
C4—C5—C6 120.7 (3) C9—C11—H11C 109.5
C4—C5—H5A 119.6 H11A—C11—H11C 109.5
C6—C5—H5A 119.6 H11B—C11—H11C 109.5
C7—C6—C5 120.2 (3) C9—C12—H12A 109.5
C7—C6—H6A 119.9 C9—C12—H12B 109.5
C5—C6—H6A 119.9 H12A—C12—H12B 109.5
C6—C7—C2 119.7 (3) C9—C12—H12C 109.5
C6—C7—Cl 117.8 (3) H12A—C12—H12C 109.5
C2—C7—Cl 122.4 (3) H12B—C12—H12C 109.5
F2—C1—C2—C7 −179.3 (4) C5—C6—C7—C2 0.2 (6)
F3—C1—C2—C7 61.3 (5) C5—C6—C7—Cl −179.2 (3)
F1—C1—C2—C7 −59.1 (5) C3—C2—C7—C6 0.3 (5)
F2—C1—C2—C3 0.2 (5) C1—C2—C7—C6 179.8 (4)
F3—C1—C2—C3 −119.2 (4) C3—C2—C7—Cl 179.7 (3)
F1—C1—C2—C3 120.5 (4) C1—C2—C7—Cl −0.8 (5)
C7—C2—C3—C4 0.5 (5) C4—N—C8—O 4.8 (5)
C1—C2—C3—C4 −179.0 (3) C4—N—C8—C9 −173.3 (3)
C2—C3—C4—C5 −1.8 (5) O—C8—C9—C11 19.1 (5)
C2—C3—C4—N −179.0 (3) N—C8—C9—C11 −162.8 (4)
C8—N—C4—C5 148.6 (3) O—C8—C9—C10 −99.1 (5)
C8—N—C4—C3 −34.1 (5) N—C8—C9—C10 79.0 (4)
C3—C4—C5—C6 2.3 (5) O—C8—C9—C12 140.2 (4)
N—C4—C5—C6 179.6 (3) N—C8—C9—C12 −41.7 (5)
C4—C5—C6—C7 −1.5 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N—H0A···O 0.86 2.24 3.041 (4) 155

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2427).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  4. Rosenblum, S. B., Huynh, T., Afonso, A., Davis, H. R., Yumibe, N., Clader, J. W. & Burnett, D. A. (1998). J. Med. Chem. 41, 973–980. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Wang, Y., Zhang, H., Huang, W., Kong, J., Zhou, J. & Zhang, B. (2009). Eur. J. Med. Chem. 44, 1638–1643. [DOI] [PubMed]
  8. Zhu, N., Tran, P., Bell, N. & Stevens, C. L. K. (2007). J. Chem. Crystallogr. 37, 670–683.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031650/pk2427sup1.cif

e-68-o2534-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031650/pk2427Isup2.hkl

e-68-o2534-Isup2.hkl (116.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031650/pk2427Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES