Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 25;68(Pt 8):o2544. doi: 10.1107/S1600536812032680

2,2-Bis(4-but­oxy­phen­yl)-1,1,1-trichloro­ethane

Graham Smith a,*
PMCID: PMC3414989  PMID: 22904976

Abstract

In the structure of the title compound, C22H27Cl3O2, which is the 4-but­oxy­phenyl analogue of the insecticidally active 4-meth­oxy­phenyl compound meth­oxy­chlor, the dihedral angle between the two benzene rings is 79.61 (11)°. Present also in the structure is an intra­molecular aromatic C—H⋯Cl inter­action.

Related literature  

For background to the mode of action of DDT analogues, see: Läuger et al. (1944); Kennard & Smith (1980). For the structures of the insecticides DDT and meth­oxy­chlor, see: DeLacy & Kennard (1972); Smith et al. (1976).graphic file with name e-68-o2544-scheme1.jpg

Experimental  

Crystal data  

  • C22H27Cl3O2

  • M r = 429.79

  • Monoclinic, Inline graphic

  • a = 5.7871 (1) Å

  • b = 18.3112 (5) Å

  • c = 20.3988 (4) Å

  • β = 91.160 (2)°

  • V = 2161.19 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 200 K

  • 0.15 × 0.15 × 0.10 mm

Data collection  

  • Oxford Gemini-S CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.951, T max = 0.981

  • 14149 measured reflections

  • 4245 independent reflections

  • 3486 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.110

  • S = 1.07

  • 4245 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032680/bt5980sup1.cif

e-68-o2544-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032680/bt5980Isup2.hkl

e-68-o2544-Isup2.hkl (203.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032680/bt5980Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2B⋯Cl3 0.93 2.69 3.361 (2) 130

Acknowledgments

The author acknowledges financial support from the Australian Research Council, and from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

The title compound, C22H27Cl302, is the 4-butoxyphenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] as well as the 4-methoxyphenyl analogue, also an insecticide (methoxychlor). Criteria for insecticidal activity of the DDT analogues have been described (Läuger et al., 1944; Kennard & Smith, 1980). The crystal structures of both DDT (DeLacy & Kennard, 1972) and methoxychlor (Smith et al., 1976) have been reported but there are no other structures of 4-alkoxyphenyl DDT derivatives in the crystallographic literature.

In the structure of the title compound (Fig. 1), the dihedral angle between the two phenyl planes is 79.61 (11)° which compares with 77.7° in the structure of methoxychlor (Smith et al., 1976) and 64.7° in DDT (DeLacy & Kennard, 1972). The conformations of the two butoxy side chains relative to their phenyl rings (A and B) are essentially identical [comparative torsion angles C3—C4—O4—C11, C4—O4—C11–C21, O4—C11—C21—C31 and C11—C21—C31—C41 are -173.0 (2), 167.44 (19), -62.3 (3), -177.8 (2)° (A) and -170.0 (2), 168.5 (2), -63.9 (3), -171.1 (3)° (B), respectively]. The B ring conformation is stabilized by an intramolecular aromatic C2B—H···Cl3 interaction (Table 1). Present in the crystal packing is a relatively short intermolecular Cl···Cl contact [3.4302 (9) Å] but no other significant interactions are found (Fig. 2).

Experimental

The title compound was obtained as an analytical reference standard from the US Public Health Service. Colourless crystal blocks suitable for X-ray analysis were obtained by room temperature evaporation of a solution in ethanol.

Refinement

Hydrogen atoms were included in the refinement at calculated positions [C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C)(aromatic, methylene and methine) or 1.5Ueq(C)(methyl), using a riding-model approximation.

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level.

Fig. 2.

Fig. 2.

A perspective view of the crystal packing in the unit cell viewed down a.

Crystal data

C22H27Cl3O2 F(000) = 904
Mr = 429.79 Dx = 1.321 Mg m3
Monoclinic, P21/c Melting point = 321–323 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 5.7871 (1) Å Cell parameters from 4362 reflections
b = 18.3112 (5) Å θ = 3.2–28.8°
c = 20.3988 (4) Å µ = 0.44 mm1
β = 91.160 (2)° T = 200 K
V = 2161.19 (8) Å3 Block, colourless
Z = 4 0.15 × 0.15 × 0.10 mm

Data collection

Oxford Gemini-S CCD area-detector diffractometer 4245 independent reflections
Radiation source: Enhance (Mo) X-ray source 3486 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.2°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −22→22
Tmin = 0.951, Tmax = 0.981 l = −23→25
14149 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.8549P] where P = (Fo2 + 2Fc2)/3
4245 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.48915 (12) 0.34506 (4) 0.74543 (3) 0.0482 (2)
Cl2 0.56526 (11) 0.19339 (4) 0.77193 (3) 0.0427 (2)
Cl3 0.11570 (10) 0.24145 (4) 0.72992 (3) 0.0414 (2)
O4A 0.2523 (3) −0.03999 (8) 0.55790 (8) 0.0337 (5)
O4B 0.2658 (3) 0.45228 (9) 0.44987 (8) 0.0366 (5)
C1 0.4168 (4) 0.25582 (13) 0.71850 (11) 0.0314 (7)
C1A 0.4329 (4) 0.16819 (12) 0.62234 (11) 0.0270 (6)
C1B 0.4276 (4) 0.30454 (11) 0.59910 (11) 0.0269 (6)
C2 0.4927 (4) 0.24406 (12) 0.64762 (11) 0.0284 (7)
C2A 0.2207 (4) 0.15300 (12) 0.59082 (11) 0.0288 (7)
C2B 0.2214 (4) 0.34358 (12) 0.59692 (11) 0.0320 (7)
C3A 0.1674 (4) 0.08342 (12) 0.56947 (11) 0.0285 (7)
C3B 0.1743 (4) 0.39339 (12) 0.54757 (11) 0.0311 (7)
C4A 0.3241 (4) 0.02695 (12) 0.57889 (11) 0.0279 (7)
C4B 0.3318 (4) 0.40494 (11) 0.49815 (11) 0.0286 (7)
C5A 0.5381 (4) 0.04132 (13) 0.60786 (12) 0.0327 (7)
C5B 0.5411 (4) 0.36850 (12) 0.50109 (11) 0.0332 (7)
C6A 0.5886 (4) 0.11156 (12) 0.62884 (12) 0.0325 (7)
C6B 0.5860 (4) 0.31939 (12) 0.55096 (11) 0.0310 (7)
C11A 0.3962 (4) −0.10180 (12) 0.57314 (12) 0.0345 (7)
C11B 0.4096 (5) 0.45527 (14) 0.39336 (12) 0.0404 (8)
C21A 0.2577 (4) −0.16968 (12) 0.55871 (12) 0.0353 (8)
C21B 0.2872 (5) 0.49745 (15) 0.34070 (13) 0.0474 (9)
C31A 0.0447 (4) −0.17793 (14) 0.59953 (13) 0.0411 (8)
C31B 0.0676 (5) 0.46320 (17) 0.31572 (15) 0.0584 (11)
C41A −0.0850 (5) −0.24830 (15) 0.58550 (15) 0.0555 (10)
C41B −0.0314 (7) 0.5020 (2) 0.25494 (19) 0.0901 (16)
H2 0.66190 0.24500 0.65010 0.0340*
H2A 0.11420 0.19040 0.58420 0.0340*
H2B 0.11320 0.33600 0.62930 0.0380*
H3A 0.02580 0.07440 0.54870 0.0340*
H3B 0.03620 0.41940 0.54740 0.0370*
H5A 0.64650 0.00420 0.61310 0.0390*
H5B 0.65140 0.37710 0.46950 0.0400*
H6A 0.73280 0.12090 0.64800 0.0390*
H6B 0.72770 0.29540 0.55230 0.0370*
H11A 0.44370 −0.10070 0.61900 0.0410*
H11B 0.44190 0.40620 0.37810 0.0480*
H12A 0.53360 −0.10090 0.54670 0.0410*
H12B 0.55530 0.47870 0.40470 0.0480*
H21A 0.35610 −0.21190 0.56590 0.0420*
H21B 0.39060 0.50350 0.30430 0.0570*
H22A 0.21120 −0.16930 0.51280 0.0420*
H22B 0.25210 0.54570 0.35740 0.0570*
H31A −0.05760 −0.13690 0.59100 0.0490*
H31B −0.04590 0.46440 0.35010 0.0700*
H32A 0.08970 −0.17660 0.64560 0.0490*
H32B 0.09680 0.41240 0.30510 0.0700*
H41A −0.21810 −0.25090 0.61270 0.0830*
H41B −0.17280 0.47860 0.24120 0.1350*
H42A 0.01440 −0.28920 0.59470 0.0830*
H42B 0.07790 0.49940 0.22020 0.1350*
H43A −0.13350 −0.24940 0.54020 0.0830*
H43B −0.06130 0.55220 0.26520 0.1350*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0668 (4) 0.0431 (4) 0.0344 (3) −0.0102 (3) −0.0077 (3) −0.0077 (3)
Cl2 0.0421 (3) 0.0535 (4) 0.0324 (3) −0.0020 (3) −0.0047 (3) 0.0116 (3)
Cl3 0.0317 (3) 0.0603 (4) 0.0324 (3) −0.0021 (3) 0.0060 (2) 0.0022 (3)
O4A 0.0360 (9) 0.0260 (8) 0.0385 (9) 0.0029 (7) −0.0114 (7) 0.0006 (7)
O4B 0.0472 (10) 0.0334 (9) 0.0294 (9) 0.0045 (7) 0.0049 (8) 0.0043 (7)
C1 0.0288 (11) 0.0377 (13) 0.0276 (12) −0.0036 (10) −0.0033 (10) 0.0003 (10)
C1A 0.0239 (11) 0.0311 (11) 0.0262 (11) −0.0030 (9) 0.0027 (9) 0.0033 (9)
C1B 0.0284 (11) 0.0252 (11) 0.0270 (11) −0.0071 (9) −0.0008 (9) −0.0051 (9)
C2 0.0239 (11) 0.0325 (12) 0.0287 (11) −0.0032 (9) 0.0003 (9) 0.0013 (10)
C2A 0.0265 (11) 0.0299 (12) 0.0298 (12) 0.0034 (9) −0.0025 (9) 0.0040 (10)
C2B 0.0288 (12) 0.0381 (13) 0.0292 (12) −0.0021 (10) 0.0063 (10) 0.0004 (10)
C3A 0.0242 (11) 0.0327 (12) 0.0284 (12) −0.0009 (9) −0.0049 (9) 0.0017 (10)
C3B 0.0286 (11) 0.0322 (12) 0.0327 (12) 0.0016 (9) 0.0030 (10) −0.0035 (10)
C4A 0.0306 (12) 0.0280 (11) 0.0252 (11) −0.0004 (9) 0.0002 (9) 0.0020 (9)
C4B 0.0362 (12) 0.0229 (11) 0.0267 (11) −0.0048 (9) −0.0011 (10) −0.0033 (9)
C5A 0.0258 (11) 0.0342 (13) 0.0378 (13) 0.0036 (10) −0.0035 (10) 0.0041 (10)
C5B 0.0355 (12) 0.0340 (12) 0.0305 (12) −0.0028 (10) 0.0089 (10) −0.0012 (10)
C6A 0.0223 (11) 0.0383 (13) 0.0369 (13) −0.0027 (9) −0.0026 (10) 0.0031 (11)
C6B 0.0292 (12) 0.0312 (12) 0.0326 (12) 0.0003 (9) 0.0022 (10) −0.0030 (10)
C11A 0.0340 (12) 0.0343 (13) 0.0352 (13) 0.0057 (10) −0.0023 (10) 0.0053 (10)
C11B 0.0507 (15) 0.0379 (13) 0.0329 (13) −0.0036 (12) 0.0093 (12) −0.0008 (11)
C21A 0.0439 (14) 0.0260 (12) 0.0359 (13) 0.0054 (10) −0.0034 (11) 0.0011 (10)
C21B 0.0691 (19) 0.0395 (14) 0.0340 (14) 0.0006 (13) 0.0078 (13) 0.0041 (12)
C31A 0.0454 (15) 0.0387 (14) 0.0389 (14) −0.0053 (11) −0.0031 (12) −0.0008 (11)
C31B 0.064 (2) 0.0591 (19) 0.0518 (18) 0.0070 (15) −0.0039 (15) −0.0013 (15)
C41A 0.0625 (18) 0.0533 (17) 0.0504 (17) −0.0198 (14) −0.0050 (15) 0.0034 (14)
C41B 0.105 (3) 0.098 (3) 0.066 (2) 0.027 (2) −0.031 (2) −0.012 (2)

Geometric parameters (Å, º)

Cl1—C1 1.771 (2) C2—H2 0.9800
Cl2—C1 1.787 (2) C2A—H2A 0.9300
Cl3—C1 1.782 (2) C2B—H2B 0.9300
O4A—C4A 1.361 (3) C3A—H3A 0.9300
O4A—C11A 1.436 (3) C3B—H3B 0.9300
O4B—C4B 1.361 (3) C5A—H5A 0.9300
O4B—C11B 1.436 (3) C5B—H5B 0.9300
C1—C2 1.535 (3) C6A—H6A 0.9300
C1A—C2 1.519 (3) C6B—H6B 0.9300
C1A—C2A 1.402 (3) C11A—H11A 0.9700
C1A—C6A 1.378 (3) C11A—H12A 0.9700
C1B—C2 1.527 (3) C11B—H11B 0.9700
C1B—C2B 1.391 (3) C11B—H12B 0.9700
C1B—C6B 1.384 (3) C21A—H21A 0.9700
C2A—C3A 1.379 (3) C21A—H22A 0.9700
C2B—C3B 1.382 (3) C21B—H21B 0.9700
C3A—C4A 1.386 (3) C21B—H22B 0.9700
C3B—C4B 1.389 (3) C31A—H31A 0.9700
C4A—C5A 1.387 (3) C31A—H32A 0.9700
C4B—C5B 1.383 (3) C31B—H31B 0.9700
C5A—C6A 1.385 (3) C31B—H32B 0.9700
C5B—C6B 1.379 (3) C41A—H41A 0.9600
C11A—C21A 1.505 (3) C41A—H42A 0.9600
C11B—C21B 1.490 (4) C41A—H43A 0.9600
C21A—C31A 1.509 (3) C41B—H41B 0.9600
C21B—C31B 1.497 (4) C41B—H42B 0.9600
C31A—C41A 1.516 (4) C41B—H43B 0.9600
C31B—C41B 1.530 (5)
C4A—O4A—C11A 118.04 (18) C6A—C5A—H5A 120.00
C4B—O4B—C11B 116.51 (19) C4B—C5B—H5B 120.00
Cl1—C1—Cl2 107.05 (12) C6B—C5B—H5B 120.00
Cl1—C1—Cl3 108.74 (13) C1A—C6A—H6A 119.00
Cl1—C1—C2 110.56 (16) C5A—C6A—H6A 119.00
Cl2—C1—Cl3 106.56 (12) C1B—C6B—H6B 119.00
Cl2—C1—C2 109.97 (16) C5B—C6B—H6B 119.00
Cl3—C1—C2 113.68 (16) O4A—C11A—H11A 110.00
C2—C1A—C2A 121.9 (2) O4A—C11A—H12A 110.00
C2—C1A—C6A 120.8 (2) C21A—C11A—H11A 110.00
C2A—C1A—C6A 117.4 (2) C21A—C11A—H12A 110.00
C2—C1B—C2B 126.4 (2) H11A—C11A—H12A 108.00
C2—C1B—C6B 116.4 (2) O4B—C11B—H11B 110.00
C2B—C1B—C6B 117.2 (2) O4B—C11B—H12B 110.00
C1—C2—C1A 112.36 (19) C21B—C11B—H11B 110.00
C1—C2—C1B 115.93 (19) C21B—C11B—H12B 110.00
C1A—C2—C1B 113.05 (18) H11B—C11B—H12B 108.00
C1A—C2A—C3A 121.1 (2) C11A—C21A—H21A 109.00
C1B—C2B—C3B 121.3 (2) C11A—C21A—H22A 109.00
C2A—C3A—C4A 120.3 (2) C31A—C21A—H21A 109.00
C2B—C3B—C4B 120.5 (2) C31A—C21A—H22A 109.00
O4A—C4A—C3A 115.7 (2) H21A—C21A—H22A 108.00
O4A—C4A—C5A 124.7 (2) C11B—C21B—H21B 109.00
C3A—C4A—C5A 119.6 (2) C11B—C21B—H22B 109.00
O4B—C4B—C3B 116.3 (2) C31B—C21B—H21B 109.00
O4B—C4B—C5B 124.9 (2) C31B—C21B—H22B 109.00
C3B—C4B—C5B 118.8 (2) H21B—C21B—H22B 108.00
C4A—C5A—C6A 119.3 (2) C21A—C31A—H31A 109.00
C4B—C5B—C6B 119.9 (2) C21A—C31A—H32A 109.00
C1A—C6A—C5A 122.4 (2) C41A—C31A—H31A 109.00
C1B—C6B—C5B 122.3 (2) C41A—C31A—H32A 109.00
O4A—C11A—C21A 107.73 (18) H31A—C31A—H32A 108.00
O4B—C11B—C21B 108.9 (2) C21B—C31B—H31B 109.00
C11A—C21A—C31A 114.4 (2) C21B—C31B—H32B 109.00
C11B—C21B—C31B 114.6 (2) C41B—C31B—H31B 109.00
C21A—C31A—C41A 112.8 (2) C41B—C31B—H32B 109.00
C21B—C31B—C41B 112.5 (3) H31B—C31B—H32B 108.00
C1—C2—H2 105.00 C31A—C41A—H41A 109.00
C1A—C2—H2 105.00 C31A—C41A—H42A 109.00
C1B—C2—H2 105.00 C31A—C41A—H43A 109.00
C1A—C2A—H2A 120.00 H41A—C41A—H42A 109.00
C3A—C2A—H2A 119.00 H41A—C41A—H43A 109.00
C1B—C2B—H2B 119.00 H42A—C41A—H43A 109.00
C3B—C2B—H2B 119.00 C31B—C41B—H41B 109.00
C2A—C3A—H3A 120.00 C31B—C41B—H42B 109.00
C4A—C3A—H3A 120.00 C31B—C41B—H43B 110.00
C2B—C3B—H3B 120.00 H41B—C41B—H42B 109.00
C4B—C3B—H3B 120.00 H41B—C41B—H43B 110.00
C4A—C5A—H5A 120.00 H42B—C41B—H43B 109.00
C11A—O4A—C4A—C3A −173.0 (2) C6B—C1B—C2—C1 144.1 (2)
C11A—O4A—C4A—C5A 7.3 (3) C6B—C1B—C2—C1A −84.1 (2)
C4A—O4A—C11A—C21A 167.44 (19) C2—C1B—C2B—C3B −175.0 (2)
C11B—O4B—C4B—C3B −170.0 (2) C6B—C1B—C2B—C3B 1.9 (3)
C11B—O4B—C4B—C5B 10.1 (3) C2—C1B—C6B—C5B 174.8 (2)
C4B—O4B—C11B—C21B 168.5 (2) C2B—C1B—C6B—C5B −2.5 (3)
Cl1—C1—C2—C1A −179.73 (16) C1A—C2A—C3A—C4A 0.0 (3)
Cl1—C1—C2—C1B −47.6 (2) C1B—C2B—C3B—C4B 0.9 (3)
Cl2—C1—C2—C1A 62.3 (2) C2A—C3A—C4A—O4A 178.1 (2)
Cl2—C1—C2—C1B −165.60 (16) C2A—C3A—C4A—C5A −2.2 (3)
Cl3—C1—C2—C1A −57.1 (2) C2B—C3B—C4B—O4B 176.8 (2)
Cl3—C1—C2—C1B 75.0 (2) C2B—C3B—C4B—C5B −3.3 (3)
C2A—C1A—C2—C1 89.6 (3) O4A—C4A—C5A—C6A −178.2 (2)
C2A—C1A—C2—C1B −44.0 (3) C3A—C4A—C5A—C6A 2.1 (3)
C6A—C1A—C2—C1 −91.4 (3) O4B—C4B—C5B—C6B −177.3 (2)
C6A—C1A—C2—C1B 135.1 (2) C3B—C4B—C5B—C6B 2.8 (3)
C2—C1A—C2A—C3A −178.6 (2) C4A—C5A—C6A—C1A 0.4 (4)
C6A—C1A—C2A—C3A 2.4 (3) C4B—C5B—C6B—C1B 0.1 (3)
C2—C1A—C6A—C5A 178.4 (2) O4A—C11A—C21A—C31A −62.3 (3)
C2A—C1A—C6A—C5A −2.5 (4) O4B—C11B—C21B—C31B −63.9 (3)
C2B—C1B—C2—C1 −38.9 (3) C11A—C21A—C31A—C41A −177.8 (2)
C2B—C1B—C2—C1A 92.9 (3) C11B—C21B—C31B—C41B −171.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2B—H2B···Cl3 0.93 2.69 3.361 (2) 130

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5980).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. DeLacy, T. P. & Kennard, C. H. L. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 2148–2152.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Kennard, C. H. L. & Smith, G. (1980). Chem. Aust. 47, 399–404.
  6. Läuger, P., Martin, H. & Müller, P. H. (1944). Helv. Chim. Acta, 47, 892–928.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smith, G., Kennard, C. H. L. & White, A. H. (1976). Aust. J. Chem. 29, 743–747.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812032680/bt5980sup1.cif

e-68-o2544-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032680/bt5980Isup2.hkl

e-68-o2544-Isup2.hkl (203.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032680/bt5980Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES