Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 25;68(Pt 8):o2550–o2551. doi: 10.1107/S1600536812027705

Andirobin from X. moluccensis

Chutima Jittaniyom a, Damrong Sommit b, Nongnuj Muangsin c, Khanitha Pudhom d,*
PMCID: PMC3414995  PMID: 22904982

Abstract

The title compound (systematic name: methyl 2-{(1R,2R)-2-[(1aS,4S,4aS,8aS)-4-(furan-3-yl)-4a-methyl-8-methyl­ene-2-oxoocta­hydro­oxireno[2,3-d]isochromen-7-yl]-2,6,6-trimethyl-5-oxocyclo­hex-3-en-1-yl}acetate), C27H32O7, was isolated from X. moluccensis seeds from Thailand. The conformations of the six-membered rings are distorted half-chair, chair and half-chair for the isolated cyclo­hexane, fused cyclo­hexane and lactone rings, respectively. In addition, the lactone ring bears in an equatorial orientation an essentially planar furan ring (r.m.s. deviation = 0.004 Å), which forms an angle of 63.87 (13)° with the mean plane defined by the ten atoms of the two fused six-membered rings (r.m.s. deviation = 0.213 Å). The absolute configuration was fixed on the basis of literature data.

Related literature  

For general background to limonoids and their activities, see: Alvi et al. (1991); Yu et al. (2007); Li et al. (2009). For related structures, see: Chanin et al. (2010); Pudhom et al. (2009, 2010). For the bioactivity of limonoids, see: Koul et al. (2004); Endo et al. (2002); Nakagawa et al. (2001); Ravangpai et al. (2011). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o2550-scheme1.jpg

Experimental  

Crystal data  

  • C27H32O7

  • M r = 468.53

  • Orthorhombic, Inline graphic

  • a = 8.8125 (5) Å

  • b = 12.5907 (7) Å

  • c = 21.9393 (11) Å

  • V = 2434.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.48 × 0.40 × 0.36 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • 13719 measured reflections

  • 3132 independent reflections

  • 2725 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.117

  • S = 1.11

  • 5520 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997; software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027705/lr2061sup1.cif

e-68-o2550-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027705/lr2061Isup2.hkl

e-68-o2550-Isup2.hkl (150.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027705/lr2061Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphisek Somphot Endowment Fund) and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (AS613A), is gratefully acknowledged. The authors are also grateful for research funding from the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of a Comprehensive Center for Innovative Food, Health Products and Agriculture.

supplementary crystallographic information

Comment

Limonoids are triterpene derivatives from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. Limonoid examination of the Meliaceae family is of growing interest due to a range of biological activities, such as insect antifeedants and growth regulators, antibacterial, antifungal, antimalarial, anticancer, antiviral and anti-inflammatory activities (Koul et al., 2004; Endo et al., 2002; Nakagawa et al., 2001; Ravangpai, et al., 2011). The genus Xylocarpus (Meliaceae) has proved to be a rich source of an array of structurally diverse limonoids, including gedunin, andirobin, mexicanolide and phragmalin type limonoids, with a broad range of biological activities (Alvi et al., 1991; Yu et al., 2007; Li et al., 2009). We have recently reported the isolation and identification a number of limonoids from three Thai mangroves in this genus, X. granatum, X. moluccensis and X. rumphii (Chanin et al., 2010; Pudhom et al., 2009; Pudhom et al., 2010). Herein, we report the complete assignments of NMR and the crystal structure of the title compound isolated from X. moluccensis seeds.

In the molecular structure, the conformation of the six-membered rings are distorted half-chair, chair and half-chair for the isolated cyclohenane, fused cyclohexane and lactone ring respectively (Cremer & Pople, 1975). In addition, the lactone ring bears in equatorial orientation a planar furan ring (r.m.s. deviation= 0.004 Å) which form an angle of 63.87 (13)o with the mean square plane (r.m.s. deviation Å) defined by the ten atoms of the two fused six-membered rings.

Experimental

General Experiment Procedures. Melting point was measured using a Fisher-Johns melting point apparatus. NMR spectra were recorded with a Bruker AV400 (1H, 400 MHz; 13C, 100 MHz) spectrometer using tetramethylsilane as an internal standard. Mass spectra were obtained from a Bruker micrOTOF mass spectrometer.

Plant Material. Fruits of X. moluccensis were collected from Surat Thani province, Thailand, in January 2010. Plant materials were identified by Royal Forest Department, Bangkok, Thailand.

Extraction and Isolation of Andirobin (1). Air-dried powdered seeds of X. moluccensis (2 kg) were extracted with MeOH (5L x 2, each for two days) at room temperature. Extracts were pooled and the solvent were removed under reduced pressure. The combined MeOH extract was then suspended in water and partitioned with EtOAc. The EtOAc crude extract obtained (30 g) was chromatographed on a sililca gel column eluted with a gradient of acetone-hexane (from 1:9 to 1:0) to yield 12 fractions. Fraction 2 was further purified by silica gel column chromatography eluting with a 1:9 mixture of acetone-hexane and recrystallized from MeOH to afford the title compound (1, 25.0 mg).

Andirobin (1): colorless crystals; 1H NMR (400 MHz, CDCl3) d 7.34 (1H, s, H-23), 7.33 (1H, s, H-21), 7.07 (1H, d, J = 10.4 Hz, H-1), 6.27 (1H, s, H-22), 5.99 (1H, d, J = 10.4 Hz, H-2), 5.41 (1H, s, H-17), 5.30 (1H, s, H-30a), 5.20 (1H, s, H-30b), 3.97 (1H, s, H-15), 3.64 (3H, s, 7-COOCH3), 2.62 (1H, dd, J = 3.2, 6.8 Hz, H-5), 2.44 (1H, dd, J = 7.2, 17.2 Hz, H-6a), 2.39 (1H, d, J = 6.8 Hz, H-9), 2.28 (1H, dd, J = 3.2, 17.2 Hz, H-6 b), 1.90 (1H, m, H-11a), 1.73 (1H, m, H-11b), 1.60 (1H, m, H-12a), 1.16 (1H, m, H-12b), 1.04 (3H, s, 28-CH3), 1.01 (3H, s, 29-CH3), 0.90 (3H, s, 19-CH3), 0.87 (3H, s, 18-CH3);

13C NMR (100 MHz, CDCl3) d 203.7 (C=O, C-3), 174.3 (C=O, C-7), 166.7 (C=O, C-16), 153.5 (CH, C-1), 143.2 (CH, C-23), 140.9 (CH, C-21), 138.9 (C, C-8), 125.7 (CH, C-2), 122.3 (CH2, C-30), 119.8 (C, C-20), 109.7 (CH, C-22), 77.4 (CH, C-15), 67.8 (C, C-14), 55.5 (CH, C-17), 52.1 (CH3, 7-COOCH3), 48.8 (CH, C-9), 46.1 (C, C-4), 43.1 (C, C-10), 42.8 (CH, C-5), 38.6 (C, C-13), 31.5 (CH2, C-6), 29.5 (CH2, C-12), 22.7 (CH3, C-29), 22.5 (CH3, C-28), 21.3 (CH2, C-11), 20.2 (CH3, C-19), 14.6 (CH3, C-18).

Refinement

All H atoms were geometrically positioned and treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2), 0.93 Å (CH), and Uiso(H) = 1.20 Ueq(C) for methylene and aromatic, 1.50 Ueq(C) for methyl. The absolute structure could not be determined from the X-ray analysis, but it was known from earlier work on related compounds (e.g. Alvi et al., 1991, Yu et al., 2007 and Li et al., 2009). 2388 Friedel pairs were therefore merged before the final refinement.

The maximum residual density ( 0.68 eÅ3) is larger than normally expected. However, the nearest atom to the corresponding minimum is O5 at 2.74 Å, which seems to indicate that de residual density can be associated to unmodeled disordered solvent molecules.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with ellipsoids drawn at the 30% probability level.

Crystal data

C27H32O7 Z = 4
Mr = 468.53 F(000) = 1000
Orthorhombic, P212121 Dx = 1.278 Mg m3
Hall symbol: P 2ac 2ab Mo Kα radiation, λ = 0.71073 Å
a = 8.8125 (5) Å µ = 0.09 mm1
b = 12.5907 (7) Å T = 296 K
c = 21.9393 (11) Å Prism, colourless
V = 2434.3 (2) Å3 0.48 × 0.40 × 0.36 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2725 reflections with I > 2σ(I)
Radiation source: Mo Kα Rint = 0.020
Graphite monochromator θmax = 27.5°, θmin = 1.9°
φ and ω scans h = −11→7
13719 measured reflections k = −15→15
3132 independent reflections l = −28→19

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.1995P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117 (Δ/σ)max = 0.014
S = 1.11 Δρmax = 0.68 e Å3
5520 reflections Δρmin = −0.18 e Å3
312 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8749 (3) 0.19440 (18) 0.08892 (10) 0.0410 (5)
H1 0.7868 0.1870 0.0660 0.049*
C2 0.9926 (3) 0.2397 (2) 0.06213 (12) 0.0504 (6)
H2 0.9842 0.2570 0.0211 0.060*
C3 1.1348 (3) 0.2640 (2) 0.09316 (12) 0.0487 (6)
C4 1.1303 (3) 0.25998 (19) 0.16248 (12) 0.0427 (5)
C5 1.0339 (2) 0.16189 (17) 0.18228 (10) 0.0344 (4)
H5 1.0890 0.1003 0.1664 0.041*
C6 1.0335 (3) 0.1469 (2) 0.25150 (11) 0.0417 (5)
H6A 1.0424 0.2159 0.2708 0.050*
H6B 0.9369 0.1166 0.2636 0.050*
C7 1.1586 (3) 0.07683 (19) 0.27427 (10) 0.0406 (5)
C8 0.6587 (2) 0.00557 (17) 0.15184 (10) 0.0352 (4)
C9 0.8277 (2) 0.03182 (16) 0.15559 (9) 0.0324 (4)
H9 0.8598 0.0073 0.1960 0.039*
C10 0.8716 (2) 0.15387 (17) 0.15342 (10) 0.0338 (4)
C11 0.9130 (2) −0.04026 (19) 0.10972 (10) 0.0377 (5)
H11A 1.0170 −0.0156 0.1068 0.045*
H11B 0.9156 −0.1118 0.1261 0.045*
C12 0.8468 (2) −0.04512 (19) 0.04580 (10) 0.0364 (4)
H12A 0.9024 −0.0975 0.0223 0.044*
H12B 0.8606 0.0233 0.0262 0.044*
C13 0.6761 (2) −0.07398 (16) 0.04482 (9) 0.0321 (4)
C14 0.5934 (2) −0.00153 (17) 0.08910 (10) 0.0338 (4)
C15 0.4320 (2) 0.0194 (2) 0.07674 (11) 0.0436 (5)
H15 0.3670 0.0315 0.1123 0.052*
C16 0.3595 (3) −0.0313 (2) 0.02300 (11) 0.0466 (6)
C17 0.6142 (2) −0.05036 (19) −0.01938 (10) 0.0369 (5)
H17 0.6351 0.0243 −0.0288 0.044*
C18 0.6499 (3) −0.18975 (18) 0.06402 (11) 0.0447 (5)
H18A 0.5447 −0.2074 0.0588 0.067*
H18B 0.6776 −0.1984 0.1060 0.067*
H18C 0.7109 −0.2358 0.0392 0.067*
C19 0.7500 (3) 0.21722 (19) 0.18871 (12) 0.0447 (6)
H19A 0.7865 0.2878 0.1964 0.067*
H19B 0.7291 0.1825 0.2267 0.067*
H19C 0.6587 0.2208 0.1649 0.067*
C20 0.6791 (3) −0.11713 (19) −0.06933 (10) 0.0394 (5)
C21 0.7912 (3) −0.0869 (2) −0.10764 (12) 0.0569 (7)
H21 0.8380 −0.0207 −0.1070 0.068*
C22 0.6448 (4) −0.2222 (2) −0.08653 (13) 0.0603 (7)
H22 0.5727 −0.2659 −0.0684 0.072*
C23 0.7334 (4) −0.2479 (3) −0.13315 (12) 0.0614 (8)
H23 0.7318 −0.3129 −0.1533 0.074*
C28 1.0646 (3) 0.3679 (2) 0.18309 (17) 0.0640 (8)
H28A 1.0457 0.3662 0.2262 0.096*
H28B 0.9713 0.3813 0.1618 0.096*
H28C 1.1360 0.4233 0.1741 0.096*
C29 1.2920 (3) 0.2503 (2) 0.18786 (14) 0.0534 (6)
H29A 1.3322 0.1816 0.1780 0.080*
H29B 1.2898 0.2590 0.2313 0.080*
H29C 1.3549 0.3043 0.1701 0.080*
C30 0.5775 (3) −0.0189 (2) 0.20065 (11) 0.0503 (6)
H30A 0.4774 −0.0411 0.1963 0.060*
H30B 0.6205 −0.0139 0.2392 0.060*
C31 1.3128 (4) 0.0371 (3) 0.35953 (15) 0.0744 (9)
H31A 1.2729 −0.0330 0.3658 0.112*
H31B 1.3411 0.0674 0.3980 0.112*
H31C 1.4004 0.0333 0.3336 0.112*
O1 0.8261 (3) −0.1661 (2) −0.14718 (10) 0.0712 (6)
O2 0.44932 (17) −0.06685 (16) −0.02238 (8) 0.0484 (4)
O3 0.54407 (18) 0.09958 (13) 0.06392 (8) 0.0427 (4)
O4 0.22495 (19) −0.0432 (2) 0.01901 (10) 0.0681 (6)
O5 1.2467 (2) 0.2941 (2) 0.06570 (11) 0.0795 (7)
O6 1.2129 (2) 0.00409 (15) 0.24700 (8) 0.0535 (4)
O7 1.1985 (2) 0.10284 (18) 0.33109 (8) 0.0591 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0448 (12) 0.0358 (11) 0.0423 (12) 0.0015 (10) −0.0057 (10) 0.0053 (9)
C2 0.0575 (14) 0.0491 (14) 0.0446 (13) −0.0022 (12) 0.0010 (11) 0.0135 (11)
C3 0.0472 (13) 0.0420 (12) 0.0571 (15) −0.0019 (11) 0.0068 (12) 0.0113 (11)
C4 0.0369 (10) 0.0364 (11) 0.0549 (14) −0.0032 (9) 0.0027 (10) −0.0047 (10)
C5 0.0313 (9) 0.0342 (10) 0.0377 (11) 0.0007 (9) 0.0029 (9) −0.0039 (9)
C6 0.0383 (11) 0.0486 (13) 0.0380 (11) 0.0017 (10) 0.0011 (10) −0.0083 (10)
C7 0.0340 (10) 0.0505 (13) 0.0373 (11) −0.0068 (10) 0.0002 (9) −0.0020 (10)
C8 0.0333 (9) 0.0357 (10) 0.0368 (10) 0.0013 (9) 0.0054 (9) −0.0015 (9)
C9 0.0317 (9) 0.0339 (10) 0.0316 (9) 0.0027 (8) 0.0000 (8) 0.0026 (8)
C10 0.0317 (9) 0.0330 (10) 0.0368 (10) 0.0028 (8) 0.0011 (9) −0.0006 (8)
C11 0.0320 (9) 0.0398 (11) 0.0414 (11) 0.0074 (9) −0.0018 (9) −0.0077 (10)
C12 0.0293 (9) 0.0411 (11) 0.0386 (10) 0.0025 (9) 0.0041 (9) −0.0052 (9)
C13 0.0306 (9) 0.0333 (10) 0.0325 (10) −0.0015 (8) 0.0019 (8) 0.0001 (8)
C14 0.0295 (9) 0.0351 (10) 0.0367 (10) 0.0001 (8) 0.0056 (8) 0.0020 (9)
C15 0.0309 (10) 0.0559 (14) 0.0438 (12) 0.0045 (10) 0.0045 (9) −0.0038 (11)
C16 0.0320 (10) 0.0609 (15) 0.0470 (13) 0.0008 (11) 0.0005 (10) 0.0015 (11)
C17 0.0299 (9) 0.0444 (11) 0.0365 (10) −0.0002 (9) 0.0006 (8) 0.0017 (10)
C18 0.0554 (13) 0.0355 (11) 0.0433 (12) −0.0041 (11) 0.0017 (11) 0.0028 (9)
C19 0.0380 (11) 0.0396 (12) 0.0565 (14) 0.0083 (10) 0.0023 (11) −0.0089 (11)
C20 0.0365 (10) 0.0490 (12) 0.0327 (10) −0.0007 (10) −0.0034 (9) 0.0000 (10)
C21 0.0575 (15) 0.0646 (16) 0.0486 (14) −0.0055 (14) 0.0143 (13) −0.0092 (13)
C22 0.0700 (18) 0.0625 (16) 0.0485 (14) −0.0169 (15) 0.0043 (14) −0.0103 (13)
C23 0.079 (2) 0.0610 (17) 0.0440 (14) 0.0081 (16) −0.0053 (14) −0.0161 (13)
C28 0.0568 (16) 0.0386 (13) 0.097 (2) −0.0021 (12) 0.0090 (16) −0.0122 (14)
C29 0.0393 (11) 0.0538 (15) 0.0671 (16) −0.0080 (12) −0.0017 (12) −0.0075 (13)
C30 0.0443 (12) 0.0640 (16) 0.0426 (12) −0.0058 (12) 0.0092 (11) 0.0043 (12)
C31 0.0599 (16) 0.102 (3) 0.0610 (17) 0.0075 (19) −0.0247 (15) −0.0005 (18)
O1 0.0636 (12) 0.0953 (17) 0.0548 (11) 0.0116 (13) 0.0136 (10) −0.0144 (11)
O2 0.0303 (7) 0.0707 (12) 0.0441 (9) −0.0009 (8) −0.0025 (7) −0.0084 (8)
O3 0.0379 (7) 0.0408 (8) 0.0493 (9) 0.0077 (7) −0.0028 (7) 0.0008 (7)
O4 0.0308 (8) 0.1065 (17) 0.0671 (12) −0.0061 (10) 0.0017 (9) −0.0101 (13)
O5 0.0559 (12) 0.110 (2) 0.0727 (13) −0.0154 (12) 0.0136 (11) 0.0291 (14)
O6 0.0519 (10) 0.0581 (11) 0.0504 (10) 0.0105 (9) −0.0017 (8) −0.0012 (9)
O7 0.0537 (10) 0.0788 (13) 0.0450 (10) 0.0036 (10) −0.0149 (8) −0.0079 (9)

Geometric parameters (Å, º)

C1—C2 1.321 (3) C14—C15 1.471 (3)
C1—C10 1.505 (3) C15—O3 1.440 (3)
C1—H1 0.9300 C15—C16 1.485 (3)
C2—C3 1.459 (4) C15—H15 0.9800
C2—H2 0.9300 C16—O4 1.198 (3)
C3—O5 1.215 (3) C16—O2 1.348 (3)
C3—C4 1.522 (4) C17—O2 1.469 (2)
C4—C29 1.534 (3) C17—C20 1.495 (3)
C4—C28 1.545 (3) C17—H17 0.9800
C4—C5 1.561 (3) C18—H18A 0.9600
C5—C6 1.530 (3) C18—H18B 0.9600
C5—C10 1.567 (3) C18—H18C 0.9600
C5—H5 0.9800 C19—H19A 0.9600
C6—C7 1.498 (3) C19—H19B 0.9600
C6—H6A 0.9700 C19—H19C 0.9600
C6—H6B 0.9700 C20—C21 1.351 (4)
C7—O6 1.194 (3) C20—C22 1.408 (4)
C7—O7 1.336 (3) C21—O1 1.358 (3)
C8—C30 1.324 (3) C21—H21 0.9300
C8—C14 1.495 (3) C22—C23 1.327 (4)
C8—C9 1.528 (3) C22—H22 0.9300
C9—C11 1.550 (3) C23—O1 1.350 (4)
C9—C10 1.585 (3) C23—H23 0.9300
C9—H9 0.9800 C28—H28A 0.9600
C10—C19 1.545 (3) C28—H28B 0.9600
C11—C12 1.520 (3) C28—H28C 0.9600
C11—H11A 0.9700 C29—H29A 0.9600
C11—H11B 0.9700 C29—H29B 0.9600
C12—C13 1.547 (3) C29—H29C 0.9600
C12—H12A 0.9700 C30—H30A 0.9300
C12—H12B 0.9700 C30—H30B 0.9300
C13—C14 1.519 (3) C31—O7 1.445 (4)
C13—C18 1.535 (3) C31—H31A 0.9600
C13—C17 1.540 (3) C31—H31B 0.9600
C14—O3 1.454 (3) C31—H31C 0.9600
C2—C1—C10 125.4 (2) C15—C14—C13 116.97 (19)
C2—C1—H1 117.3 C8—C14—C13 116.10 (17)
C10—C1—H1 117.3 O3—C15—C14 59.93 (13)
C1—C2—C3 123.9 (2) O3—C15—C16 116.2 (2)
C1—C2—H2 118.1 C14—C15—C16 119.0 (2)
C3—C2—H2 118.1 O3—C15—H15 116.5
O5—C3—C2 122.1 (2) C14—C15—H15 116.5
O5—C3—C4 121.8 (3) C16—C15—H15 116.5
C2—C3—C4 115.9 (2) O4—C16—O2 119.0 (2)
C3—C4—C29 109.9 (2) O4—C16—C15 122.5 (2)
C3—C4—C28 105.8 (2) O2—C16—C15 118.41 (18)
C29—C4—C28 108.2 (2) O2—C17—C20 105.46 (18)
C3—C4—C5 108.59 (19) O2—C17—C13 111.37 (17)
C29—C4—C5 110.0 (2) C20—C17—C13 115.22 (18)
C28—C4—C5 114.23 (19) O2—C17—H17 108.2
C6—C5—C4 112.02 (19) C20—C17—H17 108.2
C6—C5—C10 113.03 (17) C13—C17—H17 108.2
C4—C5—C10 115.81 (18) C13—C18—H18A 109.5
C6—C5—H5 104.9 C13—C18—H18B 109.5
C4—C5—H5 104.9 H18A—C18—H18B 109.5
C10—C5—H5 104.9 C13—C18—H18C 109.5
C7—C6—C5 113.70 (19) H18A—C18—H18C 109.5
C7—C6—H6A 108.8 H18B—C18—H18C 109.5
C5—C6—H6A 108.8 C10—C19—H19A 109.5
C7—C6—H6B 108.8 C10—C19—H19B 109.5
C5—C6—H6B 108.8 H19A—C19—H19B 109.5
H6A—C6—H6B 107.7 C10—C19—H19C 109.5
O6—C7—O7 123.4 (2) H19A—C19—H19C 109.5
O6—C7—C6 125.4 (2) H19B—C19—H19C 109.5
O7—C7—C6 111.1 (2) C21—C20—C22 104.8 (2)
C30—C8—C14 121.5 (2) C21—C20—C17 125.2 (2)
C30—C8—C9 122.2 (2) C22—C20—C17 130.0 (2)
C14—C8—C9 115.96 (17) C20—C21—O1 110.9 (3)
C8—C9—C11 108.14 (17) C20—C21—H21 124.6
C8—C9—C10 116.50 (17) O1—C21—H21 124.6
C11—C9—C10 115.45 (17) C23—C22—C20 108.0 (3)
C8—C9—H9 105.2 C23—C22—H22 126.0
C11—C9—H9 105.2 C20—C22—H22 126.0
C10—C9—H9 105.2 C22—C23—O1 110.2 (3)
C1—C10—C19 108.03 (19) C22—C23—H23 124.9
C1—C10—C5 109.93 (18) O1—C23—H23 124.9
C19—C10—C5 113.42 (18) C4—C28—H28A 109.5
C1—C10—C9 111.20 (17) C4—C28—H28B 109.5
C19—C10—C9 108.42 (17) H28A—C28—H28B 109.5
C5—C10—C9 105.86 (16) C4—C28—H28C 109.5
C12—C11—C9 115.89 (17) H28A—C28—H28C 109.5
C12—C11—H11A 108.3 H28B—C28—H28C 109.5
C9—C11—H11A 108.3 C4—C29—H29A 109.5
C12—C11—H11B 108.3 C4—C29—H29B 109.5
C9—C11—H11B 108.3 H29A—C29—H29B 109.5
H11A—C11—H11B 107.4 C4—C29—H29C 109.5
C11—C12—C13 113.28 (18) H29A—C29—H29C 109.5
C11—C12—H12A 108.9 H29B—C29—H29C 109.5
C13—C12—H12A 108.9 C8—C30—H30A 120.0
C11—C12—H12B 108.9 C8—C30—H30B 120.0
C13—C12—H12B 108.9 H30A—C30—H30B 120.0
H12A—C12—H12B 107.7 O7—C31—H31A 109.5
C14—C13—C18 108.80 (18) O7—C31—H31B 109.5
C14—C13—C17 107.38 (17) H31A—C31—H31B 109.5
C18—C13—C17 112.39 (18) O7—C31—H31C 109.5
C14—C13—C12 108.47 (17) H31A—C31—H31C 109.5
C18—C13—C12 111.46 (19) H31B—C31—H31C 109.5
C17—C13—C12 108.19 (17) C23—O1—C21 106.1 (2)
O3—C14—C15 58.98 (15) C16—O2—C17 120.06 (18)
O3—C14—C8 114.37 (18) C15—O3—C14 61.09 (14)
C15—C14—C8 122.08 (19) C7—O7—C31 116.5 (2)
O3—C14—C13 115.22 (17)
C10—C1—C2—C3 −4.6 (4) C9—C8—C14—C15 −153.4 (2)
C1—C2—C3—O5 171.1 (3) C30—C8—C14—C13 −122.1 (2)
C1—C2—C3—C4 −14.6 (4) C9—C8—C14—C13 52.1 (3)
O5—C3—C4—C29 −24.3 (4) C18—C13—C14—O3 −151.59 (18)
C2—C3—C4—C29 161.4 (2) C17—C13—C14—O3 −29.7 (2)
O5—C3—C4—C28 92.2 (3) C12—C13—C14—O3 87.0 (2)
C2—C3—C4—C28 −82.1 (3) C18—C13—C14—C15 −85.1 (2)
O5—C3—C4—C5 −144.7 (3) C17—C13—C14—C15 36.8 (3)
C2—C3—C4—C5 41.0 (3) C12—C13—C14—C15 153.5 (2)
C3—C4—C5—C6 175.64 (19) C18—C13—C14—C8 70.8 (2)
C29—C4—C5—C6 55.3 (3) C17—C13—C14—C8 −167.32 (18)
C28—C4—C5—C6 −66.5 (3) C12—C13—C14—C8 −50.6 (2)
C3—C4—C5—C10 −52.7 (2) C8—C14—C15—O3 101.0 (2)
C29—C4—C5—C10 −173.07 (19) C13—C14—C15—O3 −104.6 (2)
C28—C4—C5—C10 65.1 (3) O3—C14—C15—C16 105.2 (2)
C4—C5—C6—C7 −90.5 (2) C8—C14—C15—C16 −153.8 (2)
C10—C5—C6—C7 136.50 (19) C13—C14—C15—C16 0.6 (3)
C5—C6—C7—O6 −31.4 (3) O3—C15—C16—O4 −132.8 (3)
C5—C6—C7—O7 151.5 (2) C14—C15—C16—O4 158.6 (3)
C30—C8—C9—C11 127.1 (2) O3—C15—C16—O2 48.4 (3)
C14—C8—C9—C11 −47.0 (2) C14—C15—C16—O2 −20.2 (4)
C30—C8—C9—C10 −100.9 (3) C14—C13—C17—O2 −58.0 (2)
C14—C8—C9—C10 84.9 (2) C18—C13—C17—O2 61.6 (2)
C2—C1—C10—C19 118.2 (3) C12—C13—C17—O2 −174.94 (18)
C2—C1—C10—C5 −6.1 (3) C14—C13—C17—C20 −178.09 (18)
C2—C1—C10—C9 −123.0 (3) C18—C13—C17—C20 −58.5 (3)
C6—C5—C10—C1 166.66 (19) C12—C13—C17—C20 65.0 (2)
C4—C5—C10—C1 35.5 (2) O2—C17—C20—C21 137.5 (3)
C6—C5—C10—C19 45.6 (3) C13—C17—C20—C21 −99.2 (3)
C4—C5—C10—C19 −85.6 (2) O2—C17—C20—C22 −44.4 (3)
C6—C5—C10—C9 −73.1 (2) C13—C17—C20—C22 78.9 (3)
C4—C5—C10—C9 155.70 (18) C22—C20—C21—O1 0.5 (3)
C8—C9—C10—C1 −81.7 (2) C17—C20—C21—O1 179.0 (2)
C11—C9—C10—C1 46.8 (2) C21—C20—C22—C23 −0.9 (3)
C8—C9—C10—C19 36.9 (3) C17—C20—C22—C23 −179.3 (3)
C11—C9—C10—C19 165.38 (18) C20—C22—C23—O1 0.9 (4)
C8—C9—C10—C5 158.90 (17) C22—C23—O1—C21 −0.6 (4)
C11—C9—C10—C5 −72.6 (2) C20—C21—O1—C23 0.0 (3)
C8—C9—C11—C12 48.3 (3) O4—C16—O2—C17 178.2 (3)
C10—C9—C11—C12 −84.2 (2) C15—C16—O2—C17 −3.0 (4)
C9—C11—C12—C13 −53.0 (3) C20—C17—O2—C16 169.0 (2)
C11—C12—C13—C14 50.4 (2) C13—C17—O2—C16 43.4 (3)
C11—C12—C13—C18 −69.3 (2) C16—C15—O3—C14 −109.9 (2)
C11—C12—C13—C17 166.60 (19) C8—C14—O3—C15 −114.1 (2)
C30—C8—C14—O3 99.9 (3) C13—C14—O3—C15 107.6 (2)
C9—C8—C14—O3 −85.9 (2) O6—C7—O7—C31 −0.4 (4)
C30—C8—C14—C15 32.5 (3) C6—C7—O7—C31 176.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2061).

References

  1. Alvi, K. A., Crews, P., Aalbergsberg, B., Prasad, R., Simpson, J. & Weavers, R. T. (1991). Tetrahedron, 47, 8943–8948.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chanin, S., Nuanyai, T., Teerawatananond, T., Pengpreecha, S., Muangsin, N. & Pudhom, K. (2010). J. Nat. Prod. 73, 1456–1459. [DOI] [PubMed]
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Endo, T., Kita, M., Shimada, T., Moriguchi, T., Hidaki, T., Matsumoto, R., Hasegawa, S. & Omura, M. (2002). Plant Biotechnol. 19, 397–403.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Koul, O., Sing, G., Singh, R., Daniewski, W. M. & Berlozecki, S. (2004). J. Biosci. 29, 409–416. [DOI] [PubMed]
  8. Li, M.-Y., Yang, X.-B., Pan, J.-Y., Feng, G., Xiao, Q., Sinkkonen, J., Satyanandamurty, T. & Wu, J. (2009). J. Nat. Prod. 72, 2110–2114. [DOI] [PubMed]
  9. Nakagawa, H., Duan, H. & Takaishi, Y. (2001). Chem. Pharm. Bull. 49, 649–651. [DOI] [PubMed]
  10. Pudhom, K., Sommit, D., Nuclear, P., Ngamrojanavanich, N. & Petsom, A. (2009). J. Nat. Prod. 72, 2188–2191. [DOI] [PubMed]
  11. Pudhom, K., Sommit, D., Nuclear, P., Ngamrojanavanich, N. & Petsom, A. (2010). J. Nat. Prod. 73, 263–269. [DOI] [PubMed]
  12. Ravangpai, W., Sommit, D., Teerawatananond, T., Sinpranee, N., Palaga, T., Pengpreecha, S., Muangsin, N. & Pudhom, K. (2011). Bioorg. Med. Chem. Lett 21, 4485–4489. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Yu, S., Wang, X.-N., Fan, C.-Q., Lin, L.-P., Ding, J. & Yue, J.-M. (2007). J. Nat. Prod. 70, 682–685. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027705/lr2061sup1.cif

e-68-o2550-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027705/lr2061Isup2.hkl

e-68-o2550-Isup2.hkl (150.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027705/lr2061Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES