Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 25;68(Pt 8):o2553–o2554. doi: 10.1107/S1600536812033016

Melaminium hydrogen malonate

Barbara Froschauer a, Matthias Weil b,*
PMCID: PMC3414997  PMID: 22904984

Abstract

The melaminium (2,4,6-triamino-1,3,5-triazin-1-ium) cation in the title compound, C3H7N6 +·C3H3O4 , is essentially planar, with a r.m.s. deviation of the non-H atoms of 0.0085 Å. Extensive hydrogen bonding of the types N—H⋯N and N—H⋯O between cations and cations and between cations and hydrogen malonate (2-carb­oxy­ethano­ate) anions leads to the formation of supra­molecular layers parallel to (1-2-1). An intra­molecular O—H⋯O hydrogen bond in the single deprotonated malonate anion also occurs.

Related literature  

For the use of melaminium salts in polymer science, see: Weinstabl et al. (2001). For structural studies of melaminium salts of purely organic carb­oxy­lic acids, see: Choi et al. (2004); Janczak & Perpétuo (2001, 2002, 2003, 2004); Karle et al. (2003); Marchewka et al. (2003); Perpétuo & Janczak (2002, 2005); Perpétuo et al. (2005); Prior et al. (2009); Su et al. (2009); Udaya Lakshmi et al. (2006); Froschauer & Weil (2012); Zhang et al. (2004, 2005).graphic file with name e-68-o2553-scheme1.jpg

Experimental  

Crystal data  

  • C3H7N6 +·C3H3O4

  • M r = 230.20

  • Triclinic, Inline graphic

  • a = 5.1996 (15) Å

  • b = 7.499 (2) Å

  • c = 13.119 (4) Å

  • α = 100.206 (5)°

  • β = 98.014 (5)°

  • γ = 106.534 (5)°

  • V = 472.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.23 × 0.18 × 0.12 mm

Data collection  

  • Siemens SMART CCD diffractometer

  • 4807 measured reflections

  • 2354 independent reflections

  • 1190 reflections with I > 2σ(I)

  • R int = 0.078

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.105

  • S = 0.89

  • 2354 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033016/cv5323sup1.cif

e-68-o2553-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033016/cv5323Isup2.hkl

e-68-o2553-Isup2.hkl (115.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033016/cv5323Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 1.82 2.6785 (19) 176
N4—H2⋯O2ii 0.86 2.17 2.8350 (19) 134
N4—H3⋯N2ii 0.86 2.14 2.994 (2) 171
N5—H4⋯O2 0.86 2.14 2.998 (2) 172
N5—H5⋯N3iii 0.86 2.23 3.091 (2) 178
N6—H6⋯O1iii 0.86 2.15 2.8592 (19) 140
N6—H7⋯O3i 0.86 2.02 2.880 (2) 173
O1—H10⋯O3 1.00 (2) 1.47 (2) 2.450 (2) 165 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The X-ray centre of the Vienna University of Technology is acknowledged for financial support and for providing access to the single-crystal diffractometer.

supplementary crystallographic information

Comment

Melamine is a weak base with three different pKa values which decline with decreasing protonation status. The first (pKa = 5.10) is slightly above the pKa of acetic acid (4.75), the second and third (0.20 and -2.10, respectively) are significantly below the most organic carboxylic acids. Since the difference between the pKa values during an acid-base reaction corresponds to the free energy of reaction, stable products can only be expected for acids with a pKa value significantly below 5.10, whereas organic acids with acidities in the range of 5.10 or above can be expected to yield mixtures of unreacted melamine, free acid and melaminium salts. Depending on the acid valency and strengths, mono and disalts can be formed by simply heating the components or their respective solutions.

In the past, organic melamine salts were tested as potential melamine substitutes for melamine urea formaldehyde (MUF) resins (Weinstabl et al., 2001). Up to now, the following melaminium salts of purely organic carboxylic acids, viz only those with C, H and N contents, have been crystallographically characterized: melaminium acetate acetic acid solvate monohydrate (Perpétuo & Janczak, 2002), melaminium 2,4,6-trihydroxybenzoate dihydrate (Prior et al.., 2009), melaminium benzoate dihydrate (Perpétuo & Janczak, 2005), melaminium formate (Perpétuo et al., 2005), melaminium glutarate monohydrate (Janczak & Perpétuo, 2002), melaminium levulinate monohydrate (Choi et al., 2004), melaminium maleate monohydrate (Janczak & Perpétuo, 2004), bis(melaminium) DL-malate tetrahydrate (Janczak & Perpétuo, 2003), melamin(1,3)ium dihydrogenmellitate dihydrate (Karle et al.., 2003), melaminium bis(hydrogen oxalate) (Zhang et al., 2005), melaminium hydrogenphtalate (Janczak & Perpétuo, 2001), bis(melaminium) succinate succinic acid solvate dihydrate (Froschauer & Weil, 2012), melamin(1,3)ium tartrate monohydrate (Marchewka et al., 2003), bis(melaminium) tartrate 2.5-hydrate (Udaya Lakshmi et al., 2006), bis(melaminium) tartrate dihydrate (Su et al., 2009), and bis(melaminium) terephtalate dihydrate (Zhang et al., 2004).

The pKa values of 2.82 and 5.69 for the first and second deprotonation step of malonic acid led to a single deprotonated anion in the title compound, melaminium hydrogen malonate, C3H7N6+.C3H3O4-. The protonation of melamine takes place at one of the triazine N ring atoms (Fig. 1) as observed for all other single protonated melaminium salts listed above.

Both the melaminium cation and the hydrogenmalonate anions are essentially planar with r.m.s. deviations of 0.0085 Å (cation) and 0.061 Å (anion) for the non-H atoms. The angle between the two least-squares planes is 6.61 (8) °, making it possible to set up supramolecular layers held together by strong to medium hydrogen bonds of the type N—H···O and N—H···.N between cations and cations and cations and anions (Fig. 2; Table 1). The motif for the hydrogen-bonded assembly of two melaminium cations is observed in many other melamine or melaminium structures as reported previously by Prior et al. (2009). In the crystal, the supramolecular layers are arranged parallel to (121) (Fig. 3) with an interplanar distance of approximately 2.96 Å.

Experimental

39.6 mmol melamine was dissolved under refluxing conditions in 150 ml distilled water. The stoichiometric quantity (1:1) of malonic acid was added within five minutes. The mixture was then refluxed for 30 minutes and then cooled to room temperature. The precipitate formed on cooling was separeted by filtration and washed with cold methanol. The crystalline product was then dried in vacuo at 303–313 K. Single crystal growth was accomplished by dissolution of 1 g of the crystalline product under refluxing conditions in an aqueous methanol solution (2:1 v/v) to get a saturated solution. Then the solution was slowly cooled down to room temperature. Suitable crystals were obtained by slow evaporation of the solvents during five days. The crystals were washed with methanol and dried in vacuo at room temperature giving analytical pure samples. CHN analysis (found/calc.): C (31.19/31.30), H (4.01/4.37), N (36.26/36.50). NMR: (solution, DMSO) chemical shift [p.p.m.]: 1H 11.04 (s, 2H), 6.97 (s, 6H), 3.01 (s, 2H); 13C 170.45, 163.38, 40.95.

Refinement

The proton at the triazine ring of the melaminium cation was clearly discernible from a difference Fourier map (like all other H atoms). For refinement, the H atoms attached to C or N atoms were set in calculated positions and treated as riding on their parent atoms with C—H = 0.97 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). The remaining proton of the carboxyl group was refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular components of the title compound with displacement parameters drawn at the 90% probability level. H atoms are displayed as spheres with an arbirtary radius.

Fig. 2.

Fig. 2.

Supramolecular layer built up through hydrogen bonding interactions (dashed lines) between cations and cations and between cations and anions.

Fig. 3.

Fig. 3.

The assembly of supramolecular layers in the crystal parallel to (121).

Crystal data

C3H7N6+·C3H3O4 Z = 2
Mr = 230.20 F(000) = 240
Triclinic, P1 Dx = 1.617 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.1996 (15) Å Cell parameters from 950 reflections
b = 7.499 (2) Å θ = 2.9–25.6°
c = 13.119 (4) Å µ = 0.14 mm1
α = 100.206 (5)° T = 293 K
β = 98.014 (5)° Irregular, colourless
γ = 106.534 (5)° 0.23 × 0.18 × 0.12 mm
V = 472.7 (2) Å3

Data collection

Siemens SMART CCD diffractometer 1190 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.078
Graphite monochromator θmax = 28.5°, θmin = 2.9°
ω scans h = −6→6
4807 measured reflections k = −10→10
2354 independent reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.038P)2] where P = (Fo2 + 2Fc2)/3
S = 0.89 (Δ/σ)max < 0.001
2354 reflections Δρmax = 0.23 e Å3
150 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.058 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H10 1.131 (4) 0.844 (3) 0.9236 (18) 0.068 (7)*
O1 1.0512 (3) 0.8287 (2) 0.84785 (11) 0.0556 (5)
N1 0.2299 (3) 0.7179 (2) 0.29981 (11) 0.0321 (4)
H1 0.1159 0.6950 0.2412 0.038*
N2 0.3254 (3) 0.6667 (2) 0.47008 (11) 0.0313 (4)
O2 0.6330 (3) 0.6777 (2) 0.75923 (10) 0.0490 (4)
N3 0.6677 (3) 0.8814 (2) 0.40391 (11) 0.0322 (4)
N4 −0.0943 (3) 0.5082 (2) 0.36078 (11) 0.0385 (4)
H3 −0.1474 0.4505 0.4089 0.046*
H2 −0.2036 0.4858 0.3011 0.046*
C1 0.1545 (3) 0.6307 (2) 0.37848 (13) 0.0294 (4)
C3 0.4874 (3) 0.8417 (2) 0.31493 (14) 0.0311 (4)
C5 0.7245 (4) 0.6701 (3) 0.94033 (14) 0.0429 (5)
H8 0.6323 0.5333 0.9229 0.051*
H9 0.5920 0.7311 0.9605 0.051*
C2 0.5776 (3) 0.7909 (2) 0.47902 (13) 0.0288 (4)
N6 0.5500 (3) 0.9219 (2) 0.23620 (11) 0.0452 (5)
H6 0.7104 1.0015 0.2423 0.054*
H7 0.4304 0.8946 0.1787 0.054*
N5 0.7554 (3) 0.8292 (2) 0.56860 (11) 0.0387 (4)
H4 0.7090 0.7756 0.6190 0.046*
H5 0.9175 0.9078 0.5766 0.046*
C6 0.7986 (3) 0.7256 (3) 0.84124 (14) 0.0337 (5)
O4 0.8950 (3) 0.6463 (2) 1.11234 (10) 0.0585 (5)
C4 0.9489 (4) 0.7151 (3) 1.03630 (15) 0.0394 (5)
O3 1.1859 (2) 0.8250 (2) 1.03379 (10) 0.0528 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0362 (8) 0.0771 (11) 0.0396 (9) −0.0090 (7) 0.0065 (7) 0.0240 (8)
N1 0.0280 (8) 0.0396 (9) 0.0232 (8) 0.0021 (7) 0.0000 (6) 0.0118 (7)
N2 0.0264 (8) 0.0365 (9) 0.0258 (8) 0.0008 (7) 0.0023 (6) 0.0110 (7)
O2 0.0391 (8) 0.0689 (10) 0.0324 (8) 0.0037 (7) 0.0010 (6) 0.0218 (7)
N3 0.0280 (8) 0.0395 (9) 0.0275 (8) 0.0042 (6) 0.0043 (6) 0.0153 (7)
N4 0.0290 (8) 0.0480 (10) 0.0293 (9) −0.0025 (7) −0.0005 (7) 0.0152 (7)
C1 0.0274 (9) 0.0309 (10) 0.0273 (10) 0.0048 (8) 0.0050 (8) 0.0075 (8)
C3 0.0284 (10) 0.0324 (10) 0.0307 (11) 0.0055 (8) 0.0061 (8) 0.0098 (8)
C5 0.0295 (10) 0.0590 (13) 0.0356 (11) 0.0024 (9) 0.0034 (8) 0.0208 (10)
C2 0.0253 (9) 0.0306 (10) 0.0281 (10) 0.0065 (8) 0.0017 (8) 0.0077 (8)
N6 0.0338 (9) 0.0611 (11) 0.0309 (9) −0.0052 (8) 0.0003 (7) 0.0232 (8)
N5 0.0307 (8) 0.0493 (10) 0.0286 (9) −0.0019 (7) −0.0002 (7) 0.0183 (7)
C6 0.0288 (10) 0.0397 (11) 0.0312 (11) 0.0064 (8) 0.0044 (9) 0.0132 (9)
O4 0.0481 (9) 0.0789 (11) 0.0345 (8) −0.0047 (8) −0.0037 (7) 0.0274 (8)
C4 0.0344 (11) 0.0459 (12) 0.0330 (11) 0.0065 (9) 0.0033 (8) 0.0100 (9)
O3 0.0327 (8) 0.0700 (10) 0.0404 (9) −0.0041 (7) −0.0012 (6) 0.0140 (7)

Geometric parameters (Å, º)

O1—C6 1.303 (2) C3—N6 1.318 (2)
O1—H10 0.99 (2) C5—C6 1.501 (2)
N1—C3 1.359 (2) C5—C4 1.509 (3)
N1—C1 1.361 (2) C5—H8 0.9700
N1—H1 0.8600 C5—H9 0.9700
N2—C1 1.326 (2) C2—N5 1.321 (2)
N2—C2 1.351 (2) N6—H6 0.8600
O2—C6 1.207 (2) N6—H7 0.8600
N3—C3 1.320 (2) N5—H4 0.8600
N3—C2 1.355 (2) N5—H5 0.8600
N4—C1 1.318 (2) O4—C4 1.232 (2)
N4—H3 0.8600 C4—O3 1.281 (2)
N4—H2 0.8600 O3—H10 1.47 (2)
C6—O1—H10 101.7 (12) C4—C5—H9 107.6
C3—N1—C1 119.22 (15) H8—C5—H9 107.0
C3—N1—H1 120.4 N5—C2—N2 117.92 (16)
C1—N1—H1 120.4 N5—C2—N3 116.12 (15)
C1—N2—C2 115.93 (15) N2—C2—N3 125.96 (15)
C3—N3—C2 115.32 (15) C3—N6—H6 120.0
C1—N4—H3 120.0 C3—N6—H7 120.0
C1—N4—H2 120.0 H6—N6—H7 120.0
H3—N4—H2 120.0 C2—N5—H4 120.0
N4—C1—N2 120.72 (15) C2—N5—H5 120.0
N4—C1—N1 117.93 (15) H4—N5—H5 120.0
N2—C1—N1 121.35 (15) O2—C6—O1 121.35 (17)
N6—C3—N3 121.03 (15) O2—C6—C5 121.91 (16)
N6—C3—N1 116.77 (15) O1—C6—C5 116.74 (16)
N3—C3—N1 122.21 (15) O4—C4—O3 123.80 (18)
C6—C5—C4 118.87 (15) O4—C4—C5 118.79 (17)
C6—C5—H8 107.6 O3—C4—C5 117.40 (17)
C4—C5—H8 107.6 C4—O3—H10 98.9 (8)
C6—C5—H9 107.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4i 0.86 1.82 2.6785 (19) 176
N4—H2···O2ii 0.86 2.17 2.8350 (19) 134
N4—H3···N2ii 0.86 2.14 2.994 (2) 171
N5—H4···O2 0.86 2.14 2.998 (2) 172
N5—H5···N3iii 0.86 2.23 3.091 (2) 178
N6—H6···O1iii 0.86 2.15 2.8592 (19) 140
N6—H7···O3i 0.86 2.02 2.880 (2) 173
O1—H10···O3 1.00 (2) 1.47 (2) 2.450 (2) 165 (2)

Symmetry codes: (i) x−1, y, z−1; (ii) −x, −y+1, −z+1; (iii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5323).

References

  1. Choi, C. S., Venkatraman, R., Kim, E. H., Hwang, H. S. & Kang, S. K. (2004). Acta Cryst. C60, o295–o296. [DOI] [PubMed]
  2. Dowty, E. (2006). ATOMS Shape Software, Kingsport, Tennessee, USA.
  3. Froschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2555. [DOI] [PMC free article] [PubMed]
  4. Janczak, J. & Perpétuo, G. J. (2001). Acta Cryst. C57, 123–125. [DOI] [PubMed]
  5. Janczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o339–o341. [DOI] [PubMed]
  6. Janczak, J. & Perpétuo, G. J. (2003). Acta Cryst. C59, o349–o352. [DOI] [PubMed]
  7. Janczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211–o214. [DOI] [PubMed]
  8. Karle, I., Gilardi, R. D., Rao, C. C., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Marchewka, M. K., Baran, J., Pietrasko, A., Haznar, A., Debrus, S. & Ratajczak, H. (2003). Solid State Sci. 5, 509–518.
  11. Perpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, o112–o114. [DOI] [PubMed]
  12. Perpétuo, G. J. & Janczak, J. (2005). Acta Cryst. E61, o287–o289.
  13. Perpétuo, G. J., Ribeiro, M. A. & Janczak, J. (2005). Acta Cryst. E61, o1818–o1820.
  14. Prior, T. J., Goch, O. & Kift, R. L. (2009). Acta Cryst. E65, o2133. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  17. Su, H., Lv, Y.-K. & Feng, Y.-L. (2009). Acta Cryst. E65, o933. [DOI] [PMC free article] [PubMed]
  18. Udaya Lakshmi, K., Thamotharan, S., Ramamurthi, K. & Varghese, B. (2006). Acta Cryst. E62, o455–o457.
  19. Weinstabl, A., Binder, W. H., Gruber, H. & Kantner, W. (2001). J. Appl. Polym. Sci. 81, 1654–1661.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Zhang, X.-L., Chen, X.-M. & Ng, S. W. (2005). Acta Cryst. E61, o156–o157.
  22. Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, o462–o463.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033016/cv5323sup1.cif

e-68-o2553-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033016/cv5323Isup2.hkl

e-68-o2553-Isup2.hkl (115.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033016/cv5323Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES