Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 28;68(Pt 8):o2574. doi: 10.1107/S1600536812032825

3-Acetyl-1-(3-methyl­phen­yl)thio­urea

B Thimme Gowda a,*, Sabine Foro b, Sharatha Kumar a
PMCID: PMC3415014  PMID: 22905001

Abstract

In the crystal structure of the title compound, C10H12N2OS, the conformation of the two N—H bonds are anti to each other. The amide C=O and the C=S are are also anti to each other. The N—H bond adjacent to the benzene ring is syn to the m-methyl groups. The dihedral angle between the benzene ring and the side chain [mean plane of atoms C—C(O)N—C—N; maximum deviation 0.029 (2) Å] is 14.30 (7)°. There is an intramolecular N—H⋯O hydrogen bond generating an S(6) ring motif. In the crystal, the molecules are linked via N—H⋯) hydrogen bonds, forming chains propagating along [001]. The S atom is disordered and was refined using a split model [occupancy ratio 0.56 (4):0.44 (4)].

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Alkan et al. (2011); Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010); Shahwar et al. (2012), of N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007) and of N-chloro­aryl­sulfonamides, see: Gowda & Ramachandra (1989); Jyothi & Gowda (2004); Shetty & Gowda (2004).graphic file with name e-68-o2574-scheme1.jpg

Experimental  

Crystal data  

  • C10H12N2OS

  • M r = 208.29

  • Monoclinic, Inline graphic

  • a = 7.6841 (9) Å

  • b = 14.943 (1) Å

  • c = 9.5358 (9) Å

  • β = 107.49 (1)°

  • V = 1044.32 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.48 × 0.44 × 0.24 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire CCD. diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.878, T max = 0.936

  • 4011 measured reflections

  • 2137 independent reflections

  • 1789 reflections with I > 2σ(I)

  • R int = 0.011

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.100

  • S = 1.06

  • 2137 reflections

  • 145 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032825/rk2375sup1.cif

e-68-o2574-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032825/rk2375Isup2.hkl

e-68-o2574-Isup2.hkl (105.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032825/rk2375Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.87 (1) 1.90 (2) 2.6536 (16) 144 (2)
N2—H2N⋯O1i 0.85 (1) 2.12 (1) 2.9564 (16) 166 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

Thiourea and its derivatives are known to exhibit a wide variety of biological activities. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloroarylamides (Gowda & Ramachandra, 1989; Jyothi & Gowda, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of 3-acetyl-1-(3-methylphenyl)thiourea, has been determined (Fig. 1).

The conformation of the two N–H bonds are anti to each other. The adjacent N–H bond is syn to the m-methyl group in the benzene ring, compared to the anti conformation observed between the N–H bond and the o-methyl group in the benzene ring in 3-acetyl-1-(2-methylphenyl)thiourea, I, (Shahwar et al., 2012). Furthermore, the conformation of the amide C═O and the C═S are anti to each other, similar to that observed in I.

The side chain is oriented itself with respect to the phenyl ring with the torsion angles of C2—C1–N1—C7 = -168.76 (14)° and C6—C1—N1—C7 = 14.71 (24)°. The dihedral angle between the phenyl ring and the side chain (N1/C7/N2/C8/O1/C9) is 14.30 (7)°.

The amide oxygen exhibits a bifurcated hydrogen bonding by showing the simultaneous intra- and intermolecular hydrogen bonding generating S(6) and C(4) motifs. In the crystal of the title compound, the molecules are linked via N—H···S hydrogen bonds with an R22(12) motif and N—H···O hydrogen bonds with a C(4) motif into a layered structure (Table 1, Fig. 2).

Experimental

3-Acetyl-1-(3-methylphenyl)thiourea was synthesized by adding a solution of acetyl chloride (0.10 mol) in acetone (30 ml) dropwise to a suspension of ammonium thiocyanate (0.10 mol) in acetone (30 ml). The reaction mixture was refluxed for 30 min. After cooling to room temperature, a solution of 3-methylaniline (0.10 mol) in acetone (10 ml) was added and refluxed for 3 h. The reaction mixture was poured into acidified cold water. The precipitated title compound was recrystallized to constant melting point from acetonitrile. The purity of the compound was checked and characterized by its infrared spectrum. The characteristic absorptions observed are 3163.7 cm-1, 1690.0 cm-1, 1269.5 cm-1 and 693.3 cm-1 for the stretching bands of N-H, C═O, C-N and C═S, respectively.

Prism like yellow single crystals used in X-ray diffraction studies were grown in acetonitrile solution by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å, methyl C—H = 0.96Å. The amino H atoms were freely refined with the N–H distances restrained to 0.86 (2)Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq (C-methyl) of the parent atom.

The S atom is disordered and was refined using a split model. The corresponding s.o.f.'s were refined so that their sum was unity: 0.56 (4) and 0.44.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Only major moiety (S1A) are presented.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H12N2OS F(000) = 440
Mr = 208.29 Dx = 1.325 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1948 reflections
a = 7.6841 (9) Å θ = 2.6–27.9°
b = 14.943 (1) Å µ = 0.28 mm1
c = 9.5358 (9) Å T = 295 K
β = 107.49 (1)° Prism, yellow
V = 1044.32 (18) Å3 0.48 × 0.44 × 0.24 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire CCD. diffractometer 2137 independent reflections
Radiation source: fine-focus sealed tube 1789 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.011
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→8
Tmin = 0.878, Tmax = 0.936 k = −13→18
4011 measured reflections l = −9→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2352P] where P = (Fo2 + 2Fc2)/3
2137 reflections (Δ/σ)max = 0.001
145 parameters Δρmax = 0.17 e Å3
2 restraints Δρmin = −0.22 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.20722 (18) 1.01499 (9) 0.39974 (15) 0.0337 (3)
C2 0.23877 (19) 1.03395 (10) 0.54780 (17) 0.0364 (3)
H2 0.3113 0.9953 0.6178 0.044*
C3 0.1649 (2) 1.10903 (10) 0.59419 (18) 0.0413 (4)
C4 0.0590 (2) 1.16622 (11) 0.4881 (2) 0.0494 (4)
H4 0.0085 1.2171 0.5163 0.059*
C5 0.0282 (2) 1.14793 (11) 0.3408 (2) 0.0506 (4)
H5 −0.0429 1.1871 0.2710 0.061*
C6 0.1008 (2) 1.07243 (10) 0.29439 (18) 0.0428 (4)
H6 0.0785 1.0607 0.1948 0.051*
C7 0.30263 (18) 0.89953 (9) 0.24567 (15) 0.0334 (3)
C8 0.4388 (2) 0.76042 (10) 0.38195 (15) 0.0361 (3)
C9 0.5236 (3) 0.67388 (11) 0.35913 (18) 0.0520 (4)
H9A 0.6484 0.6724 0.4198 0.078*
H9B 0.5190 0.6685 0.2577 0.078*
H9C 0.4580 0.6251 0.3851 0.078*
C10 0.1971 (2) 1.12586 (13) 0.7555 (2) 0.0539 (4)
H10A 0.2948 1.0885 0.8117 0.081*
H10B 0.0880 1.1123 0.7807 0.081*
H10C 0.2289 1.1875 0.7772 0.081*
N1 0.28202 (17) 0.93305 (8) 0.36952 (13) 0.0354 (3)
H1N 0.323 (2) 0.8973 (10) 0.4440 (16) 0.042*
N2 0.37949 (17) 0.81347 (8) 0.26055 (13) 0.0344 (3)
H2N 0.391 (2) 0.7951 (11) 0.1792 (16) 0.041*
O1 0.42351 (17) 0.78202 (7) 0.50180 (11) 0.0483 (3)
S1A 0.2654 (12) 0.9501 (3) 0.0852 (7) 0.0498 (10) 0.56 (4)
S1B 0.234 (2) 0.9416 (8) 0.0776 (9) 0.0656 (16) 0.44 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0337 (7) 0.0314 (7) 0.0377 (8) −0.0023 (6) 0.0131 (6) −0.0005 (6)
C2 0.0353 (7) 0.0366 (8) 0.0373 (7) −0.0019 (6) 0.0106 (6) −0.0014 (6)
C3 0.0392 (8) 0.0389 (8) 0.0495 (9) −0.0076 (6) 0.0191 (7) −0.0089 (7)
C4 0.0506 (9) 0.0353 (8) 0.0676 (11) 0.0024 (7) 0.0256 (8) −0.0049 (8)
C5 0.0517 (9) 0.0398 (9) 0.0612 (11) 0.0092 (7) 0.0182 (8) 0.0120 (8)
C6 0.0461 (8) 0.0421 (8) 0.0402 (8) 0.0039 (7) 0.0129 (7) 0.0052 (7)
C7 0.0344 (7) 0.0363 (7) 0.0299 (7) −0.0020 (6) 0.0103 (5) 0.0014 (6)
C8 0.0471 (8) 0.0337 (7) 0.0297 (7) −0.0007 (6) 0.0150 (6) 0.0016 (6)
C9 0.0795 (12) 0.0421 (9) 0.0397 (9) 0.0143 (8) 0.0256 (8) 0.0051 (7)
C10 0.0549 (10) 0.0569 (11) 0.0547 (10) −0.0057 (8) 0.0238 (8) −0.0196 (8)
N1 0.0451 (7) 0.0337 (6) 0.0273 (6) 0.0047 (5) 0.0108 (5) 0.0027 (5)
N2 0.0456 (7) 0.0344 (6) 0.0254 (6) 0.0008 (5) 0.0140 (5) −0.0008 (5)
O1 0.0791 (8) 0.0417 (6) 0.0292 (6) 0.0119 (5) 0.0242 (5) 0.0047 (4)
S1A 0.078 (2) 0.043 (2) 0.0358 (14) 0.0165 (11) 0.0274 (16) 0.0155 (6)
S1B 0.076 (3) 0.091 (4) 0.0285 (11) 0.031 (2) 0.0134 (15) 0.0141 (17)

Geometric parameters (Å, º)

C1—C6 1.386 (2) C7—S1A 1.653 (5)
C1—C2 1.388 (2) C7—S1B 1.654 (7)
C1—N1 1.4186 (18) C8—O1 1.2268 (17)
C2—C3 1.388 (2) C8—N2 1.3636 (18)
C2—H2 0.9300 C8—C9 1.493 (2)
C3—C4 1.386 (2) C9—H9A 0.9600
C3—C10 1.504 (2) C9—H9B 0.9600
C4—C5 1.379 (3) C9—H9C 0.9600
C4—H4 0.9300 C10—H10A 0.9600
C5—C6 1.389 (2) C10—H10B 0.9600
C5—H5 0.9300 C10—H10C 0.9600
C6—H6 0.9300 N1—H1N 0.868 (13)
C7—N1 1.3354 (18) N2—H2N 0.853 (14)
C7—N2 1.4044 (19)
C6—C1—C2 119.71 (14) S1A—C7—S1B 9.2 (7)
C6—C1—N1 125.04 (13) O1—C8—N2 122.46 (13)
C2—C1—N1 115.17 (13) O1—C8—C9 122.14 (13)
C3—C2—C1 121.73 (14) N2—C8—C9 115.40 (13)
C3—C2—H2 119.1 C8—C9—H9A 109.5
C1—C2—H2 119.1 C8—C9—H9B 109.5
C4—C3—C2 118.18 (15) H9A—C9—H9B 109.5
C4—C3—C10 121.56 (15) C8—C9—H9C 109.5
C2—C3—C10 120.25 (15) H9A—C9—H9C 109.5
C5—C4—C3 120.29 (15) H9B—C9—H9C 109.5
C5—C4—H4 119.9 C3—C10—H10A 109.5
C3—C4—H4 119.9 C3—C10—H10B 109.5
C4—C5—C6 121.54 (16) H10A—C10—H10B 109.5
C4—C5—H5 119.2 C3—C10—H10C 109.5
C6—C5—H5 119.2 H10A—C10—H10C 109.5
C1—C6—C5 118.55 (15) H10B—C10—H10C 109.5
C1—C6—H6 120.7 C7—N1—C1 131.79 (12)
C5—C6—H6 120.7 C7—N1—H1N 112.6 (11)
N1—C7—N2 114.34 (12) C1—N1—H1N 115.7 (11)
N1—C7—S1A 127.9 (2) C8—N2—C7 129.89 (12)
N2—C7—S1A 117.58 (19) C8—N2—H2N 119.0 (11)
N1—C7—S1B 128.8 (3) C7—N2—H2N 111.0 (11)
N2—C7—S1B 116.6 (3)
C6—C1—C2—C3 0.6 (2) N2—C7—N1—C1 −178.23 (13)
N1—C1—C2—C3 −176.12 (12) S1A—C7—N1—C1 7.4 (5)
C1—C2—C3—C4 −0.8 (2) S1B—C7—N1—C1 −4.2 (10)
C1—C2—C3—C10 178.03 (14) C6—C1—N1—C7 14.7 (2)
C2—C3—C4—C5 0.3 (2) C2—C1—N1—C7 −168.76 (14)
C10—C3—C4—C5 −178.41 (16) O1—C8—N2—C7 3.5 (2)
C3—C4—C5—C6 0.2 (3) C9—C8—N2—C7 −176.63 (14)
C2—C1—C6—C5 −0.1 (2) N1—C7—N2—C8 −1.4 (2)
N1—C1—C6—C5 176.32 (14) S1A—C7—N2—C8 173.5 (4)
C4—C5—C6—C1 −0.3 (2) S1B—C7—N2—C8 −176.3 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1 0.87 (1) 1.90 (2) 2.6536 (16) 144 (2)
N2—H2N···O1i 0.85 (1) 2.12 (1) 2.9564 (16) 166 (2)

Symmetry code: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2375).

References

  1. Alkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769–777.
  2. Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.
  3. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  4. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.
  5. Gowda, B. T. & Ramachandra, P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1067–1071.
  6. Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.
  7. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  8. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  9. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  10. Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032825/rk2375sup1.cif

e-68-o2574-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032825/rk2375Isup2.hkl

e-68-o2574-Isup2.hkl (105.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812032825/rk2375Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES