Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 28;68(Pt 8):o2575. doi: 10.1107/S1600536812033107

N-(2-Chloro­phen­yl)-2-nitro­benzene­sulfonamide

U Chaithanya a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3415015  PMID: 22905002

Abstract

In the title compound, C12H9ClN2O4S, the N—H bond in the –SO2—NH– segment is syn to both the ortho-nitro group in the sulfonyl­benzene ring and the ortho-Cl atom in the aniline ring. The mol­ecule is twisted at the S—N bond with a torsion angle of 75.0 (2)°. The dihedral angle between the sulfonyl­benzene and aniline rings is 54.97 (11)°. The amide H atom shows bifurcated hydrogen bonding, generating S(7) and C(4) motifs. In the crystal, N—H⋯O(S) hydrogen bonds link the mol­ecules into chains.

Related literature  

For studies of the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Alkan et al. (2011); Bowes et al. (2003); Gowda et al. (2000), Saeed et al. (2010); Shahwar et al. (2012), of N-aroylsulfonamides, see: Suchetan et al. (2012), of N-chloro­aryl­sulfonamides, see: Gowda et al. (2005); Shetty & Gowda (2004) and of N-bromo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983); Usha & Gowda (2006). For hydrogen-bonding patterns and motifs, see: Adsmond & Grant (2001); Allen et al. (1998); Bernstein et al. (1995); Etter (1990).graphic file with name e-68-o2575-scheme1.jpg

Experimental  

Crystal data  

  • C12H9ClN2O4S

  • M r = 312.72

  • Monoclinic, Inline graphic

  • a = 9.2477 (9) Å

  • b = 15.293 (1) Å

  • c = 10.4671 (9) Å

  • β = 108.66 (1)°

  • V = 1402.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.40 × 0.32 × 0.16 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.845, T max = 0.934

  • 5456 measured reflections

  • 2847 independent reflections

  • 2331 reflections with I > 2σ(I)

  • R int = 0.013

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.098

  • S = 1.13

  • 2847 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033107/sj5261sup1.cif

e-68-o2575-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033107/sj5261Isup2.hkl

e-68-o2575-Isup2.hkl (139.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033107/sj5261Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.17 (2) 2.844 (2) 138 (2)
N1—H1N⋯O3 0.84 (2) 2.49 (2) 3.099 (3) 130 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As part of our studies of substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-aroylsulfonamides (Suchetan et al., 2012); N-chloroarylsulfonamides (Gowda et al., 2005; Shetty & Gowda, 2004) and N-bromoarylsulfonamides (Gowda & Mahadevappa, 1983; Usha & Gowda, 2006), in the present work, the crystal structure of N-(2-Chlorophenyl)-2-nitrobenzenesulfonamide has been determined (Fig. 1).

The conformation of the N—H bond in the —SO2—NH— segment is syn to both the ortho-nitro group in the sulfonyl benzene ring and ortho-Cl atom in the anilino ring. similar to that observed in N-(2-chlorobenzoyl)-2-nitrobenzenesulfonamide (I) (Suchetan et al., 2012). The molecule is twisted at the S—N bond with the torsional angle of 74.97 (20)°, compared to the value of -59.68 (17)° in (I).

The dihedral angle between the sulfonyl and the anilino rings is 54.97 (11)°, compared to the value of 71.2 (1)° in (I).

The amide H-atom shows bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group in the sulfonyl benzene ring and the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating S(7) and C(4) motifs (Adsmond & Grant 2001; Allen et al., 1998; Bernstein et al., 1995; Etter, 1990).

In the crystal, the intermolecular N–H···O (S) hydrogen bonds (Table 1) link the molecules into chains. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by treating 2-nitrobenzenesulfonylchloride with 2-chloroaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resulting solid N-(2-chlorophenyl)-2-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point (145° C) from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å. The amino H atom was freely refined with the N—H distances restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level. An intramolecular hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C12H9ClN2O4S F(000) = 640
Mr = 312.72 Dx = 1.481 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2659 reflections
a = 9.2477 (9) Å θ = 2.6–27.9°
b = 15.293 (1) Å µ = 0.43 mm1
c = 10.4671 (9) Å T = 293 K
β = 108.66 (1)° Prism, colourless
V = 1402.5 (2) Å3 0.40 × 0.32 × 0.16 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2847 independent reflections
Radiation source: fine-focus sealed tube 2331 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.013
Rotation method data acquisition using ω scans θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→11
Tmin = 0.845, Tmax = 0.934 k = −10→19
5456 measured reflections l = −13→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0298P)2 + 1.0512P] where P = (Fo2 + 2Fc2)/3
2847 reflections (Δ/σ)max = 0.001
184 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3704 (3) 0.90407 (15) 0.1498 (2) 0.0399 (5)
C2 0.4480 (3) 0.97153 (16) 0.2333 (3) 0.0453 (6)
C3 0.4168 (4) 1.0576 (2) 0.1994 (4) 0.0742 (10)
H3 0.4712 1.1017 0.2556 0.089*
C4 0.3045 (5) 1.0777 (2) 0.0816 (4) 0.1019 (15)
H4 0.2812 1.1360 0.0583 0.122*
C5 0.2257 (5) 1.0125 (3) −0.0026 (4) 0.0996 (14)
H5 0.1492 1.0269 −0.0821 0.120*
C6 0.2596 (4) 0.9256 (2) 0.0303 (3) 0.0654 (8)
H6 0.2078 0.8817 −0.0280 0.079*
C7 0.1554 (2) 0.74776 (15) 0.2396 (2) 0.0339 (5)
C8 0.0533 (3) 0.80681 (15) 0.2644 (2) 0.0393 (5)
C9 −0.1011 (3) 0.7882 (2) 0.2248 (3) 0.0555 (7)
H9 −0.1683 0.8267 0.2453 0.067*
C10 −0.1544 (3) 0.7124 (2) 0.1549 (3) 0.0667 (8)
H10 −0.2584 0.7002 0.1266 0.080*
C11 −0.0550 (3) 0.6547 (2) 0.1267 (3) 0.0621 (8)
H11 −0.0922 0.6042 0.0777 0.075*
C12 0.0997 (3) 0.67125 (17) 0.1705 (3) 0.0469 (6)
H12 0.1667 0.6310 0.1537 0.056*
N1 0.3166 (2) 0.76256 (13) 0.28819 (18) 0.0343 (4)
H1N 0.353 (3) 0.7839 (15) 0.3657 (18) 0.041*
N2 0.5643 (3) 0.95397 (14) 0.3642 (2) 0.0514 (6)
O1 0.3492 (2) 0.74417 (12) 0.06758 (17) 0.0559 (5)
O2 0.56839 (19) 0.78488 (12) 0.2647 (2) 0.0550 (5)
O3 0.5276 (2) 0.91073 (14) 0.44578 (19) 0.0627 (5)
O4 0.6898 (3) 0.98600 (16) 0.3829 (3) 0.0893 (8)
Cl1 0.11837 (8) 0.90467 (4) 0.34591 (7) 0.05248 (19)
S1 0.41059 (7) 0.79209 (4) 0.18966 (6) 0.03658 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0484 (13) 0.0379 (12) 0.0350 (12) −0.0023 (11) 0.0155 (11) 0.0014 (10)
C2 0.0540 (15) 0.0361 (13) 0.0442 (14) −0.0040 (11) 0.0134 (12) 0.0013 (11)
C3 0.100 (3) 0.0369 (15) 0.074 (2) −0.0043 (16) 0.011 (2) 0.0045 (15)
C4 0.143 (4) 0.0470 (19) 0.089 (3) 0.012 (2) 0.000 (3) 0.0246 (19)
C5 0.127 (3) 0.076 (3) 0.063 (2) 0.014 (2) −0.016 (2) 0.027 (2)
C6 0.082 (2) 0.0601 (18) 0.0405 (15) −0.0023 (16) 0.0012 (15) 0.0051 (14)
C7 0.0377 (12) 0.0358 (12) 0.0304 (11) −0.0014 (9) 0.0139 (10) 0.0016 (9)
C8 0.0421 (13) 0.0392 (13) 0.0388 (12) 0.0001 (10) 0.0159 (11) 0.0020 (10)
C9 0.0423 (14) 0.0621 (18) 0.0660 (18) 0.0035 (13) 0.0228 (13) 0.0020 (15)
C10 0.0417 (15) 0.077 (2) 0.081 (2) −0.0157 (15) 0.0193 (15) −0.0068 (18)
C11 0.0594 (17) 0.0566 (17) 0.070 (2) −0.0251 (15) 0.0206 (16) −0.0159 (15)
C12 0.0536 (15) 0.0398 (13) 0.0512 (15) −0.0050 (11) 0.0221 (13) −0.0055 (11)
N1 0.0365 (10) 0.0405 (11) 0.0274 (9) −0.0006 (8) 0.0124 (8) −0.0025 (8)
N2 0.0530 (13) 0.0391 (12) 0.0546 (14) −0.0058 (10) 0.0065 (11) −0.0084 (11)
O1 0.0866 (14) 0.0501 (10) 0.0439 (10) −0.0153 (10) 0.0391 (10) −0.0172 (8)
O2 0.0391 (9) 0.0486 (11) 0.0826 (13) 0.0060 (8) 0.0268 (9) −0.0022 (10)
O3 0.0725 (13) 0.0634 (13) 0.0454 (11) 0.0022 (11) 0.0095 (10) 0.0042 (10)
O4 0.0606 (14) 0.0777 (16) 0.108 (2) −0.0295 (12) −0.0037 (13) 0.0032 (14)
Cl1 0.0585 (4) 0.0417 (3) 0.0616 (4) 0.0036 (3) 0.0253 (3) −0.0108 (3)
S1 0.0433 (3) 0.0341 (3) 0.0387 (3) −0.0010 (2) 0.0221 (3) −0.0057 (2)

Geometric parameters (Å, º)

C1—C6 1.379 (4) C8—C9 1.383 (3)
C1—C2 1.393 (3) C8—Cl1 1.732 (2)
C1—S1 1.774 (2) C9—C10 1.375 (4)
C2—C3 1.370 (4) C9—H9 0.9300
C2—N2 1.471 (3) C10—C11 1.373 (4)
C3—C4 1.370 (5) C10—H10 0.9300
C3—H3 0.9300 C11—C12 1.379 (4)
C4—C5 1.375 (5) C11—H11 0.9300
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.384 (5) N1—S1 1.6114 (18)
C5—H5 0.9300 N1—H1N 0.838 (16)
C6—H6 0.9300 N2—O3 1.211 (3)
C7—C12 1.385 (3) N2—O4 1.216 (3)
C7—C8 1.390 (3) O1—S1 1.4241 (17)
C7—N1 1.431 (3) O2—S1 1.4230 (18)
C6—C1—C2 118.5 (2) C10—C9—C8 119.5 (3)
C6—C1—S1 118.8 (2) C10—C9—H9 120.2
C2—C1—S1 122.70 (19) C8—C9—H9 120.2
C3—C2—C1 121.7 (3) C11—C10—C9 120.3 (3)
C3—C2—N2 116.6 (2) C11—C10—H10 119.8
C1—C2—N2 121.7 (2) C9—C10—H10 119.8
C4—C3—C2 119.0 (3) C10—C11—C12 120.4 (3)
C4—C3—H3 120.5 C10—C11—H11 119.8
C2—C3—H3 120.5 C12—C11—H11 119.8
C3—C4—C5 120.5 (3) C11—C12—C7 120.1 (2)
C3—C4—H4 119.7 C11—C12—H12 119.9
C5—C4—H4 119.7 C7—C12—H12 119.9
C4—C5—C6 120.4 (3) C7—N1—S1 122.05 (15)
C4—C5—H5 119.8 C7—N1—H1N 116.9 (17)
C6—C5—H5 119.8 S1—N1—H1N 112.4 (17)
C1—C6—C5 119.9 (3) O3—N2—O4 125.1 (3)
C1—C6—H6 120.1 O3—N2—C2 118.0 (2)
C5—C6—H6 120.1 O4—N2—C2 116.9 (2)
C12—C7—C8 119.0 (2) O2—S1—O1 119.96 (12)
C12—C7—N1 119.4 (2) O2—S1—N1 107.04 (11)
C8—C7—N1 121.6 (2) O1—S1—N1 106.75 (10)
C9—C8—C7 120.5 (2) O2—S1—C1 107.77 (11)
C9—C8—Cl1 119.2 (2) O1—S1—C1 107.01 (12)
C7—C8—Cl1 120.26 (18) N1—S1—C1 107.80 (11)
C6—C1—C2—C3 0.0 (4) C10—C11—C12—C7 −2.2 (4)
S1—C1—C2—C3 178.9 (2) C8—C7—C12—C11 0.4 (4)
C6—C1—C2—N2 178.1 (3) N1—C7—C12—C11 178.0 (2)
S1—C1—C2—N2 −3.0 (4) C12—C7—N1—S1 76.6 (3)
C1—C2—C3—C4 1.2 (5) C8—C7—N1—S1 −105.9 (2)
N2—C2—C3—C4 −177.0 (4) C3—C2—N2—O3 121.6 (3)
C2—C3—C4—C5 −1.0 (7) C1—C2—N2—O3 −56.6 (3)
C3—C4—C5—C6 −0.4 (8) C3—C2—N2—O4 −56.8 (4)
C2—C1—C6—C5 −1.4 (5) C1—C2—N2—O4 125.0 (3)
S1—C1—C6—C5 179.7 (3) C7—N1—S1—O2 −169.32 (17)
C4—C5—C6—C1 1.6 (7) C7—N1—S1—O1 −39.7 (2)
C12—C7—C8—C9 2.1 (4) C7—N1—S1—C1 75.0 (2)
N1—C7—C8—C9 −175.4 (2) C6—C1—S1—O2 147.7 (2)
C12—C7—C8—Cl1 −178.01 (18) C2—C1—S1—O2 −31.2 (2)
N1—C7—C8—Cl1 4.5 (3) C6—C1—S1—O1 17.4 (3)
C7—C8—C9—C10 −2.9 (4) C2—C1—S1—O1 −161.5 (2)
Cl1—C8—C9—C10 177.2 (2) C6—C1—S1—N1 −97.1 (2)
C8—C9—C10—C11 1.2 (5) C2—C1—S1—N1 84.0 (2)
C9—C10—C11—C12 1.3 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (2) 2.17 (2) 2.844 (2) 138 (2)
N1—H1N···O3 0.84 (2) 2.49 (2) 3.099 (3) 130 (2)

Symmetry code: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5261).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. , 90, 2058–2077. [DOI] [PubMed]
  2. Alkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769–777.
  3. Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun., pp. 1043–1044.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  6. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  7. Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572–582.
  8. Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362. [DOI] [PubMed]
  9. Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.
  10. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  12. Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Suchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o274. [DOI] [PMC free article] [PubMed]
  17. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033107/sj5261sup1.cif

e-68-o2575-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033107/sj5261Isup2.hkl

e-68-o2575-Isup2.hkl (139.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033107/sj5261Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES