Skip to main content
The Texas Heart Institute Journal logoLink to The Texas Heart Institute Journal
. 1984 Mar;11(1):24–30.

Study of Electrophysiological Ischemic Events During Coronary Angioplasty

Robert M Donaldson 1, Peter Taggart 1, J Graeme Bennett 1, Anthony F Rickards 1
PMCID: PMC341673  PMID: 15227091

Abstract

The electrophysiological and mechanical events that follow transient therapeutic coronary artery balloon occlusion were analyzed in five patients. A marked (mean, 60 msec) decrease in the repolarization time of the left ventricular ischemic zone (assessed indirectly from endocardial monophasic action potential [MAP] recordings) ensued within 6 to 10 beats of occlusion. Abnormalities in left ventricular relaxation occurred almost simultaneously and preceded contraction abnormalities. A shift in the ST segment in the electrocardiogram (ECG) usually followed within the next 5 to 10 beats. An increase in heart rate (approximately 10 beats per minute) appeared last in the sequence of events. Angina was a variable parameter, frequently absent. Thus, intracavitary recordings of the electrical and mechanical changes are sensitive indicators of the early ischemic changes that follow coronary occlusion, and may be used to assess the effects of therapeutic interventions on events resulting from a myocardial perfusion deficit.

Full text

PDF
24

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battler A., Froelicher V. F., Gallagher K. P., Kemper W. S., Ross J. Dissociation between regional myocardial dysfunction and ECG changes during ischemia in the conscious dog. Circulation. 1980 Oct;62(4):735–744. doi: 10.1161/01.cir.62.4.735. [DOI] [PubMed] [Google Scholar]
  2. Donaldson R. M., Taggart P., Swanton H., Fox K., Noble D., Rickards A. F. Intracardiac electrode detection of early ischaemia in man. Br Heart J. 1983 Sep;50(3):213–221. doi: 10.1136/hrt.50.3.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frederiksen J. W., Weiss J. L., Weisfeldt M. L. Time constant of isovolumic pressure fall: determinants in the working left ventricle. Am J Physiol. 1978 Dec;235(6):H701–H706. doi: 10.1152/ajpheart.1978.235.6.H701. [DOI] [PubMed] [Google Scholar]
  4. Grüntzig A. R., Senning A., Siegenthaler W. E. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med. 1979 Jul 12;301(2):61–68. doi: 10.1056/NEJM197907123010201. [DOI] [PubMed] [Google Scholar]
  5. Janse M. J., Kléber A. G. Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res. 1981 Nov;49(5):1069–1081. doi: 10.1161/01.res.49.5.1069. [DOI] [PubMed] [Google Scholar]
  6. Kumada T., Karliner J. S., Pouleur H., Gallagher K. P., Shirato K., Ross J., Jr Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am J Physiol. 1979 Nov;237(5):H542–H549. doi: 10.1152/ajpheart.1979.237.5.H542. [DOI] [PubMed] [Google Scholar]
  7. Lazzara R., El-Sherif N., Hope R. R., Scherlag B. J. Ventricular arrhythmias and electrophysiological consequences of myocardial ischemia and infarction. Circ Res. 1978 Jun;42(6):740–749. doi: 10.1161/01.res.42.6.740. [DOI] [PubMed] [Google Scholar]
  8. Lazzara R., el-Sherif N., Scherlag B. J. Early and late effects of coronary artery occlusion on canine Purkinje fibers. Circ Res. 1974 Sep;35(3):391–399. doi: 10.1161/01.res.35.3.391. [DOI] [PubMed] [Google Scholar]
  9. Olsson B., Varnauskas E., Korsgren M. Further improved method for measuring monophasic action potentials of the intact human heart. J Electrocardiol. 1971;4(1):19–23. doi: 10.1016/s0022-0736(71)80045-6. [DOI] [PubMed] [Google Scholar]

Articles from Texas Heart Institute Journal are provided here courtesy of Texas Heart Institute

RESOURCES