Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Mar;5(3):825–833. doi: 10.1093/nar/5.3.825

Polynucleotide kinase from a T4 mutant which lacks the 3' phosphatase activity.

V Cameron, D Soltis, O C Uhlenbeck
PMCID: PMC342026  PMID: 205838

Abstract

Polynucleotide kinase from E. coli infected with the PseT 1 mutant of bacteriophage T4 has been isolated. The PseT 1 enzyme purifies similarly to normal polynucleotide kinase and effectively transfers the gamma phosphate of ATP to the 5' terminal hydroxyl of DNA and RNA. The PseT 1 and normal enzymes require similar magnesium ion concentrations, have the same pH optima and are both inhibited by inorganic phosphate. However, the PseT 1 enzyme is totally lacking the 3' phosphatase activity associated with normal polynucleotide kinase. The PseT 1 enzyme is a useful tool for the preparation of oligonucleotides with 3' and 5' terminal phosphates for use as susbstrates for RNA ligase.

Full text

PDF
825

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltz R. H., Drake J. W. Bacteriophage T4 transformation: an assay for mutations induced in vitro. Virology. 1972 Aug;49(2):462–474. doi: 10.1016/0042-6822(72)90498-9. [DOI] [PubMed] [Google Scholar]
  2. Becker A., Hurwitz J. The enzymatic cleavage of phosphate termini from polynucleotides. J Biol Chem. 1967 Mar 10;242(5):936–950. [PubMed] [Google Scholar]
  3. Cameron V., Uhlenbeck O. C. 3'-Phosphatase activity in T4 polynucleotide kinase. Biochemistry. 1977 Nov 15;16(23):5120–5126. doi: 10.1021/bi00642a027. [DOI] [PubMed] [Google Scholar]
  4. Depew R. E., Cozzarelli N. R. Genetics and physiology of bacteriophage T4 3'-phosphatase: evidence for involvement of the enzyme in T4 DNA metabolism. J Virol. 1974 Apr;13(4):888–897. doi: 10.1128/jvi.13.4.888-897.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Khorana H. G., Agarwal K. L., Büchi H., Caruthers M. H., Gupta N. K., Kleppe K., Kumar A., Otsuka E., RajBhandary U. L., Van de Sande J. H. Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J Mol Biol. 1972 Dec 28;72(2):209–217. doi: 10.1016/0022-2836(72)90146-5. [DOI] [PubMed] [Google Scholar]
  6. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Panet A., van de Sande J. H., Loewen P. C., Khorana H. G., Raae A. J., Lillehaug J. R., Kleppe K. Physical characterization and simultaneous purification of bacteriophage T4 induced polynucleotide kinase, polynucleotide ligase, and deoxyribonucleic acid polymerase. Biochemistry. 1973 Dec 4;12(25):5045–5050. doi: 10.1021/bi00749a003. [DOI] [PubMed] [Google Scholar]
  8. Uhlenbeck O. C., Cameron V. Equimolar addition of oligoribonucleotides with T4 RNA ligase. Nucleic Acids Res. 1977 Jan;4(1):85–98. doi: 10.1093/nar/4.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Walker G. C., Uhlenbeck O. C., Bedows E., Gumport R. I. T4-induced RNA ligase joins single-stranded oligoribonucleotides. Proc Natl Acad Sci U S A. 1975 Jan;72(1):122–126. doi: 10.1073/pnas.72.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES