Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Apr;5(4):1325–1334. doi: 10.1093/nar/5.4.1325

Ability of modified forms of phenylalanine tRNA to stimulate guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of E. coli

James Ofengand 1, Richard Liou 1
PMCID: PMC342080  PMID: 349503

Abstract

tRNAPhe of E. coli, modified at its 4-thiouridine (4Srd) and 3-(3-amino-3-carboxypropyl)uridine (nbt3Urd) residues, was tested for its ability to induce (p)ppGpp synthesis. The 4Srd residue was derivatized with the p-azido-phenacyl group, cross-linked to Cyd13, and the borohydride reduction product of the cross-link was prepared. The nbt3Urd residue was derivatized with the N-(4-azido-2-nitrophenyl)glycyl group. None of these derivatives had more than a minor effect on the affinity of the tRNA for the stringent factor-ribosome complex, and no effect at all on the maximum velocity of (p)ppGpp synthesis, either at 2 or 82 mM NH4Cl. These two regions of the tRNA which are on opposite faces of the tRNA molecule do not appear to be structurally important for recognition by the stringent factor-ribosome complex. They may provide useful sites, therefore, for the introduction of photoaffinity or fluorescent probes with which to study tRNA-stringent factor recognition.

Full text

PDF
1325

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berthelot F., Gros F., Favre A. Biological activity of cross-linked Escherichia coli tRNA f Met. Eur J Biochem. 1972 Sep 18;29(2):343–347. doi: 10.1111/j.1432-1033.1972.tb01994.x. [DOI] [PubMed] [Google Scholar]
  2. Carré D. S., Thomas G., Favre A. Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleotidyl-transferase and aminoacyl synthetases. Biochimie. 1974;56(8):1089–1101. doi: 10.1016/s0300-9084(74)80097-0. [DOI] [PubMed] [Google Scholar]
  3. Cashel M. Regulation of bacterial ppGpp and pppGpp. Annu Rev Microbiol. 1975;29:301–318. doi: 10.1146/annurev.mi.29.100175.001505. [DOI] [PubMed] [Google Scholar]
  4. Friedman S. Acylation of transfer ribonucleic acid with the N-hydroxysuccinimide ester of phenoxyacetic acid. Biochemistry. 1972 Aug 29;11(18):3435–3443. doi: 10.1021/bi00768a017. [DOI] [PubMed] [Google Scholar]
  5. Kim S. H. Three-dimensional structure of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1976;17:181–216. doi: 10.1016/s0079-6603(08)60070-7. [DOI] [PubMed] [Google Scholar]
  6. Krauskopf M., Chen C. M., Ofengand J. Interaction of fragmented and cross-linked Escherichia coli valine transfer ribonucleic acid with T u factor-guanosine triphosphate complex. J Biol Chem. 1972 Feb 10;247(3):842–850. [PubMed] [Google Scholar]
  7. Kumar S. A., Krauskopf M., Ofengand J. Effect of intramolecular photochemical cross-linking and of alkylation of 4-thiouridine in E. coli tRNA1val. On the heterologous mischarging by yeast phenylalanyl-tRNA synthetase. J Biochem. 1973 Aug;74(2):341–353. [PubMed] [Google Scholar]
  8. Nauheimer U., Hedgcoth C. Activation of several tRNAs of Escherichia coli by the phenoxyacetyl derivative of N-hydroxysuccinimide. Arch Biochem Biophys. 1974 Feb;160(2):631–642. doi: 10.1016/0003-9861(74)90440-8. [DOI] [PubMed] [Google Scholar]
  9. Ofengand J., Chládek S., Robilard G., Bierbaum J. Enzymatic acylation of oxidized-reduced transfer ribonucleic acid by Escherichia coli, yeast, and rat liver synthetases occurs almost exclusively at the 2'-hydroxyl. Biochemistry. 1974 Dec 17;13(26):5425–5432. doi: 10.1021/bi00723a029. [DOI] [PubMed] [Google Scholar]
  10. Ofengand J., Delaney P., Bierbaum J. Photo-induced cross-linking of 4Srd and Cyd residues in Escherichia coli tRNA and its use as a conformational probe. Methods Enzymol. 1974;29:673–684. doi: 10.1016/0076-6879(74)29059-1. [DOI] [PubMed] [Google Scholar]
  11. Ofengand J., Henes C. The function of pseudouridylic acid in transfer ribonucleic acid. II. Inhibition of amino acyl transfer ribonucleic acid-ribosome complex formation by ribothymidylyl-pseudouridylyl-cytidylyl-guanosine 3'-phosphate. J Biol Chem. 1969 Nov 25;244(22):6241–6253. [PubMed] [Google Scholar]
  12. Ofengand J., Schwartz I., Chinali G., Hixson S. S., Hixson S. H. Photoaffinity-probe-modified tRNA for the analysis of ribosomal binding sites. Methods Enzymol. 1977;46:683–702. doi: 10.1016/s0076-6879(77)46086-5. [DOI] [PubMed] [Google Scholar]
  13. Pedersen F. S., Lund E., Kjeldgaard N. O. Codon specific, tRNA dependent in vitro synthesis of ppGpp and pppGpp. Nat New Biol. 1973 May 2;243(122):13–15. [PubMed] [Google Scholar]
  14. Roe B., Michael M., Dudock B. Function of N2 methylguanine in phenylalanine transfer RNA. Nat New Biol. 1973 Dec 5;246(153):135–138. doi: 10.1038/newbio246135a0. [DOI] [PubMed] [Google Scholar]
  15. Schiller P. W., Schechter A. N. Covalent attachment of fluorescent probes to the X-base of Escherichia coli phenylalanine transfer ribonucleic acid. Nucleic Acids Res. 1977 Jul;4(7):2161–2167. doi: 10.1093/nar/4.7.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shugart L. Effect of selective chemical modification of 4-thiouridine of phenylalanine transfer ribonucleic acid on enzyme recognition. Arch Biochem Biophys. 1972 Feb;148(2):488–495. doi: 10.1016/0003-9861(72)90167-1. [DOI] [PubMed] [Google Scholar]
  17. Sprinzl M., Richter D. Free 3'-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli. Eur J Biochem. 1976 Dec;71(1):171–176. doi: 10.1111/j.1432-1033.1976.tb11103.x. [DOI] [PubMed] [Google Scholar]
  18. Thomas G., Favre A. 4-Thiouridine as the target for near-ultraviolet light induced growth delay in Escherichia coli. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1454–1461. doi: 10.1016/0006-291x(75)90522-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES