Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 May;5(5):1539–1549. doi: 10.1093/nar/5.5.1539

Enzymatic synthesis of oligodeoxyribonucleotides of defined sequence. Polynucleotide phosphorylase catalysed synthesis using pyrimidine analog-containing deoxyribonucleoside 5'-diphosphates.

E M Trip, M Smith
PMCID: PMC342102  PMID: 351564

Abstract

The E. coli polynucleotide phosphorylase-catalysed reaction of the deoxynucleoside 5'-diphosphates of 5-methyldeoxycytidine, N4-hydroxydeoxycytidine, deoxyuridine and 5-mercurideoxyuridine with the primers d(pT-T-A-G) and d(pT-T-T-T-T-T) have been studied under conditions where the primer is extended, predominantly, by one or two nucleotide residues. In experiments with 5-mercurideoxyuridine 5'-diphosphate, no 5-mercurideoxy-uridine-containing oligonucleotides were produced. The other three nucleotide analogs were found to be good substrates for E. coli PNPase and the conditions established for synthesis with these analogs will allow the construction of a number of biologically useful types of oligodeoxyribonucleotide.

Full text

PDF
1539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breter H. J., Zahn R. K. A rapid separation of the four major deoxynucleosides and deoxyinosine by high-pressure liquid cation-exchange chromatography. Anal Biochem. 1973 Aug;54(2):346–352. doi: 10.1016/0003-2697(73)90362-x. [DOI] [PubMed] [Google Scholar]
  2. Budowsky E. I., Sverdlov E. D., Spasokukotskaya T. N. Mechanism of the mutagenic action of hydroxylamine. VII. Functional activity and specificity of cytidine triphosphate modified with hydroxylamine and O-methylhydroxylamine. Biochim Biophys Acta. 1972 Dec 6;287(2):195–210. doi: 10.1016/0005-2787(72)90370-x. [DOI] [PubMed] [Google Scholar]
  3. Budowsky E. I. The mechanism of the mutagenic action of hydroxylamines. Prog Nucleic Acid Res Mol Biol. 1976;16:125–188. doi: 10.1016/s0079-6603(08)60757-6. [DOI] [PubMed] [Google Scholar]
  4. Cerami A., Reich E., Ward D. C., Goldberg I. H. The interaction of actinomycin with DNA: requirement for the 2-amino group of purines. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1036–1042. doi: 10.1073/pnas.57.4.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dale R. M., Martin E., Livingston D. C., Ward D. C. Direct covalent mercuration of nucleotides and polynucleotides. Biochemistry. 1975 Jun 3;14(11):2447–2457. doi: 10.1021/bi00682a027. [DOI] [PubMed] [Google Scholar]
  6. Dale R. M., Ward D. C. Mercurated polynucleotides: new probes for hybridization and selective polymer fractionation. Biochemistry. 1975 Jun 3;14(11):2458–2469. doi: 10.1021/bi00682a028. [DOI] [PubMed] [Google Scholar]
  7. Flavell R. A., Sabo D. L., Bandle E. F., Weissmann C. Site-directed mutagenesis: effect of an extracistronic mutation on the in vitro propagation of bacteriophage Qbeta RNA. Proc Natl Acad Sci U S A. 1975 Jan;72(1):367–371. doi: 10.1073/pnas.72.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flavell R. A., Sabo D. L., Bandle E. F., Weissmann C. Site-directed mutagenesis: generation of an extracistronic mutation in bacteriophage Q beta RNA. J Mol Biol. 1974 Oct 25;89(2):255–272. doi: 10.1016/0022-2836(74)90517-8. [DOI] [PubMed] [Google Scholar]
  9. Friedman J., Friedmann A., Razin A. Studies on the biological role of DNA methylation: III Role in excision of one-genome long single-stranded phi X 174 DNA. Nucleic Acids Res. 1977 Oct;4(10):3483–3496. doi: 10.1093/nar/4.10.3483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillam S., Rottman F., Jahnke P., Smith M. Enzymatic synthesis of oligonucleotides of defined sequence: synthesis of a segment of yeast iso-1-cytochrome c gene. Proc Natl Acad Sci U S A. 1977 Jan;74(1):96–100. doi: 10.1073/pnas.74.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goeddel D. V., Yansura D. G., Caruthers M. H. Studies on gene control regions. VI. The 5- methyl of thymine, a lac repressor recognition site. Nucleic Acids Res. 1977 Sep;4(9):3039–3054. doi: 10.1093/nar/4.9.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lomant A. J., Fresco J. R. Structural and energetic consequences of noncomplementary base oppositions in nucleic acid helices. Prog Nucleic Acid Res Mol Biol. 1975;15(0):185–218. doi: 10.1016/s0079-6603(08)60120-8. [DOI] [PubMed] [Google Scholar]
  13. MICHELSON A. M. SYNTHESIS OF NUCLEOTIDE ANHYDRIDES BY ANION EXCHANGE. Biochim Biophys Acta. 1964 Sep 11;91:1–13. doi: 10.1016/0926-6550(64)90164-1. [DOI] [PubMed] [Google Scholar]
  14. Pike L. M., Rottman F. The determination of 2'-O-methylnucleosides in RNA. Anal Biochem. 1974 Oct;61(2):367–378. doi: 10.1016/0003-2697(74)90404-7. [DOI] [PubMed] [Google Scholar]
  15. Sabo D. L., Domingo E., Bandle E. F., Flavell R. A., Weissmann C. A guanosine to adenosine transition in the 3' terminal extracistronic region of bacteriophage Q beta RNA leading to loss of infectivity. J Mol Biol. 1977 May 15;112(2):235–252. doi: 10.1016/s0022-2836(77)80141-1. [DOI] [PubMed] [Google Scholar]
  16. Tye B. K., Nyman P. O., Lehman I. R., Hochhauser S., Weiss B. Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA. Proc Natl Acad Sci U S A. 1977 Jan;74(1):154–157. doi: 10.1073/pnas.74.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Uziel M., Koh C. K., Cohn W. E. Rapid ion-exchange chromatographic microanalysis of ultraviolet-absorbing materials and its application to nucleosides. Anal Biochem. 1968 Oct 24;25(1):77–98. doi: 10.1016/0003-2697(68)90083-3. [DOI] [PubMed] [Google Scholar]
  18. Vovis G. F., Lacks S. Complementary action of restriction enzymes endo R-DpnI and Endo R-DpnII on bacteriophage f1 DNA. J Mol Biol. 1977 Sep 25;115(3):525–538. doi: 10.1016/0022-2836(77)90169-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES