Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Jun;5(6):1845–1862. doi: 10.1093/nar/5.6.1845

Subunit topography of RNA polymerase (E. coli) in the complex with DNA.

M Okada, J Vergne, J Brahms
PMCID: PMC342129  PMID: 353732

Abstract

E. Coli RNA polymerase binding to different DNAs (from E. Coli, 5-bromodeoxyuridine (BrdUrd) substituted DNA and poly [d(BrU-A)] was induced with ultraviolet (U.V.) light to form protein-DNA crosslinked complexes. Two independent methods of analysis, polyacrylamide gel electrophoresis in SDS and chloroform extraction indicated the formation of a stable complex between the enzyme and DNA. The complexes were formed under different ionic strength conditions, at low enzyme to DNA ratios in order to approach the conditions of specific binding. In contrast there was no crosslinking of the complex in 1 M KCl solution which dissociates the enzyme from DNA. The efficiency of formation of strongly bound complex was found to be much higher with holoenzyme than with core enzyme. The following results were obtained : 1) The large subunits beta and beta' were found to be bound to DNA. 2) Relatively small amount of sigma subunit were bound to DNA while alpha subunits were essentially not attached to DNA. The high binding affinity of beta and beta' subunits was also observed in the studies of isolated subunits. These results lead to a model of enzyme-DNA complex in which the large beta and beta' subunits provide the contacts between the RNA polymerase and the DNA.

Full text

PDF
1845

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgess R. R. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6168–6176. [PubMed] [Google Scholar]
  2. Chamberlin M. J., Ring J. Studies of the binding of Escherichia coli RNA polymerase to DNA. V. T7 RNA chain initiation by enzyme-DNA complexes. J Mol Biol. 1972 Sep 28;70(2):221–237. doi: 10.1016/0022-2836(72)90535-9. [DOI] [PubMed] [Google Scholar]
  3. Chamberlin M. J. The selectivity of transcription. Annu Rev Biochem. 1974;43(0):721–775. doi: 10.1146/annurev.bi.43.070174.003445. [DOI] [PubMed] [Google Scholar]
  4. Frischauf A. M., Scheit K. H. Affinity labeling of E. coli RNA polymerase with substrate and template analogues. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1227–1233. doi: 10.1016/0006-291x(73)90596-2. [DOI] [PubMed] [Google Scholar]
  5. Hermier B., Pacaud M., Dubert J. M. Action of protease I of Escherichia coli on RNA polymerase of same origin. Eur J Biochem. 1973 Oct 5;38(2):307–310. doi: 10.1111/j.1432-1033.1973.tb03063.x. [DOI] [PubMed] [Google Scholar]
  6. Heyden B., Nüsslein C., Schaller H. Single RNA polymerase binding site isolated. Nat New Biol. 1972 Nov 1;240(96):9–12. doi: 10.1038/newbio240009a0. [DOI] [PubMed] [Google Scholar]
  7. Hillel Z., Wu C. W. Subunit topography of RNA polymerase from Escherichia coli. A cross-linking study with bifunctional reagents. Biochemistry. 1977 Jul 26;16(15):3334–3342. doi: 10.1021/bi00634a008. [DOI] [PubMed] [Google Scholar]
  8. Hinkle D. C., Chamberlin M. J. Studies of the binding of Escherichia coli RNA polymerase to DNA. I. The role of sigma subunit in site selection. J Mol Biol. 1972 Sep 28;70(2):157–185. doi: 10.1016/0022-2836(72)90531-1. [DOI] [PubMed] [Google Scholar]
  9. Khesin R. B., Gorlenko Z. M., Shemyakin M. F., Stvolinsky S. L., Mindlin S. Z., Ilyina T. S. Studies on the functions of the RNA polymerase components by means of mutations. Mol Gen Genet. 1969;105(3):243–261. doi: 10.1007/BF00337475. [DOI] [PubMed] [Google Scholar]
  10. Kitano Y., Kameyama T. Molecular structure of RNA polymerase and its complex with DNA. J Biochem. 1969 Jan;65(1):1–16. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lecocq J. P. Differential action of trypsin on the beta' subunit of DNA-dependent RNA polymerase from E. coli. FEBS Lett. 1971 Aug 15;16(3):213–215. doi: 10.1016/0014-5793(71)80136-9. [DOI] [PubMed] [Google Scholar]
  13. Lill H. R., Hartmann G. R. Digestion with matrix-bound proteases as a possible probe for the topography of the DNA-dependent RNA polymerase from Escherichia coli. Eur J Biochem. 1975 May;54(1):45–53. doi: 10.1111/j.1432-1033.1975.tb04112.x. [DOI] [PubMed] [Google Scholar]
  14. Lill U. I., Behrendt E. M., Hartmann G. R. Hybridization in vitro of subunits of the DNA-dependent RNA polymerase from Escherichia coli and Micrococcus luteus. Eur J Biochem. 1975 Apr 1;52(3):411–420. doi: 10.1111/j.1432-1033.1975.tb04009.x. [DOI] [PubMed] [Google Scholar]
  15. Lill U. I., Behrendt E. M., Hartmann G. R. Hybridization in vitro of subunits of the DNA-dependent RNA polymerase from Escherichia coli and Micrococcus luteus. Eur J Biochem. 1975 Apr 1;52(3):411–420. doi: 10.1111/j.1432-1033.1975.tb04009.x. [DOI] [PubMed] [Google Scholar]
  16. Lin S. Y., Riggs A. D. Photochemical attachment of lac repressor to bromodeoxyuridine-substituted lac operator by ultraviolet radiation. Proc Natl Acad Sci U S A. 1974 Mar;71(3):947–951. doi: 10.1073/pnas.71.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lubin M. Observations on the structure of RNA polymerase and its attachmnt to DNA. J Mol Biol. 1969 Jan 14;39(1):219–233. doi: 10.1016/0022-2836(69)90343-x. [DOI] [PubMed] [Google Scholar]
  18. Markovitz A. Ultraviolet light-induced stable complexes of DNA and DNA polymerase. Biochim Biophys Acta. 1972 Nov 9;281(4):522–534. doi: 10.1016/0005-2787(72)90153-0. [DOI] [PubMed] [Google Scholar]
  19. Panny S. R., Heil A., Mazus B., Palm P., Zillig W., Mindlin S. Z., Ilyina T. S., Khesin R. B. A temperature sensitive mutation of the beta'-subunit of DNA-dependent RNA polymerase from E. coli T 16. FEBS Lett. 1974 Nov 15;48(2):241–245. doi: 10.1016/0014-5793(74)80477-1. [DOI] [PubMed] [Google Scholar]
  20. Pilet J., Blicharski J., Brahms J. Conformations and structural transitions in polydeoxynucleotides. Biochemistry. 1975 May 6;14(9):1869–1876. doi: 10.1021/bi00680a011. [DOI] [PubMed] [Google Scholar]
  21. Pilz I., Kratky O., Rabussay D. Studies on the conformation of DNA-dependent RNA polymerase in solution by small-angle x-ray measurements. Eur J Biochem. 1972 Jul 13;28(2):205–220. doi: 10.1111/j.1432-1033.1972.tb01904.x. [DOI] [PubMed] [Google Scholar]
  22. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  23. Shetlar M. D., Schott H. N., Martinson H. G., Lin E. T. Formation of thymine-lysine adducts in irradiated DNA-lysine systems. Biochem Biophys Res Commun. 1975 Sep 2;66(1):88–93. doi: 10.1016/s0006-291x(75)80298-1. [DOI] [PubMed] [Google Scholar]
  24. Smets L. A., Cornelis J. J. Repairable and irrepairable damage in 5-bromouracil-substituted DNA exposed to ultra-violet radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;19(5):445–457. doi: 10.1080/09553007114550581. [DOI] [PubMed] [Google Scholar]
  25. Stetter K. O., Zillig W. Transcription in lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus curvatus. Eur J Biochem. 1974 Oct 2;48(2):527–540. doi: 10.1111/j.1432-1033.1974.tb03794.x. [DOI] [PubMed] [Google Scholar]
  26. Strniste G. F., Smith D. A. Induction of stable linkage between the deoxyribonucleic acid dependent ribonucleic acid polymerase and d(A-T)n-d(A-T)n by ultraviolet light. Biochemistry. 1974 Jan 29;13(3):485–493. doi: 10.1021/bi00700a014. [DOI] [PubMed] [Google Scholar]
  27. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES