Abstract
The steady-state mechanism of the aminoacylation of tRNAPhe by the corresponding synthetase from yeast has been investigated in detail by kinetic experiments. It was found that there are two alternative mechanisms: one favoured at low tRNA concentrations and the other at high tRNA concentrations. ATP and Phe are bound randomly to the enzyme. AMP is released immediately after the binding of ATP and Phe. Between the release of AMP and pyrophosphate (PPi) there is at least one additional step. Based on the experimental results a model of the steady-state mechanism is proposed. This model includes the sequence of addition of substrates to the enzyme and the release of products from the enzyme as well as the composition of the intermediate complexes with the enzyme. This model is in accordance with previous results based on different techniques. The results are explained by a "flip-flop" mechanism for all the substrates and products involved in the reaction.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allende C. C., Chaimovich H., Gatica M., Allende J. E. The aminoacyl transfer ribonucleic acid synthetases. II. Properties of an adenosine triphosphate-threonyl transfer ribonucleic acid synthetase complex. J Biol Chem. 1970 Jan 10;245(1):93–101. [PubMed] [Google Scholar]
- Berther J. M., Mayer P., Dutler H. Phenylalanyl-tRNA synthetase from yeast. Steady-state kinetic investigation of the reaction mechanism. Eur J Biochem. 1974 Aug 15;47(1):151–163. doi: 10.1111/j.1432-1033.1974.tb03678.x. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta. 1963 Feb 12;67:173–187. doi: 10.1016/0006-3002(63)91815-8. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta. 1963 Feb 12;67:188–196. doi: 10.1016/0006-3002(63)91816-x. [DOI] [PubMed] [Google Scholar]
- Deutscher M. P. Rat liver glutamyl ribonucleic acid synthetase. II. Further properties and anomalous pyrophosphate exchange. J Biol Chem. 1967 Mar 25;242(6):1132–1139. [PubMed] [Google Scholar]
- Fasiolo F., Ebel J. P., Lazdunski M. Non-equivalence of the sites of yeast phenylalanyl-tRNA synthetase during catalysis. Eur J Biochem. 1977 Feb 15;73(1):7–15. doi: 10.1111/j.1432-1033.1977.tb11286.x. [DOI] [PubMed] [Google Scholar]
- Fasiolo F., Ebel J. P. Yeast phenylalanyl-tRNA synthetase. Stoichiometry of the phenylalanyl adenylate-enzyme complex and transfer of phenylalanine from this complex to tRNA-PHE. Eur J Biochem. 1974 Nov 1;49(1):257–263. doi: 10.1111/j.1432-1033.1974.tb03830.x. [DOI] [PubMed] [Google Scholar]
- Fasiolo F., Remy P., Pouyet J., Ebel J. P. Yeast phenylalanyl-tRNA synthetase. Molecular weight and interaction with tRNA Phe and phenylalanine. Eur J Biochem. 1974 Dec 16;50(1):227–236. doi: 10.1111/j.1432-1033.1974.tb03891.x. [DOI] [PubMed] [Google Scholar]
- Favorova O. O., Kochkina L. L., Meldrajs J. A., Kisselev L. L., Zinoviev V. V. Kinetic parameters of tryptophan: tRNA ligase catalyzed ATP-(32P) pyrophosphate exchange as an approach to extimation of the order of substrate binding. FEBS Lett. 1975 Aug 15;56(2):322–326. doi: 10.1016/0014-5793(75)81119-7. [DOI] [PubMed] [Google Scholar]
- Hertz H. S., Zachau H. G. Kinetic properties of phenylalanyl-tRNA and seryl-tRNA synthetases for normal substrates and fluorescent analogs. Eur J Biochem. 1973 Aug 17;37(2):203–213. doi: 10.1111/j.1432-1033.1973.tb02977.x. [DOI] [PubMed] [Google Scholar]
- Hirsch R., Zachau H. G. Isolierung und Charakterisierung der Seryl- und Phenylalanyl-tRNA-Synthetase aus Hefe. Hoppe Seylers Z Physiol Chem. 1976 Apr;357(4):509–526. [PubMed] [Google Scholar]
- Kisselev L. L., Fasiolog F. Kinetic mechanism of the [32P] ATP-PPi exchange reaction catalysed by yeast phenylalanyl-tRNA synthetase. FEBS Lett. 1975 Nov 15;59(2):254–257. doi: 10.1016/0014-5793(75)80387-5. [DOI] [PubMed] [Google Scholar]
- Lazdunski M., Petitclerc C., Chappelet D., Lazdunski C. Flip-flop mechanisms in enzymology. A model: the alkaline phosphatase of Escherichia coli. Eur J Biochem. 1971 May 11;20(1):124–139. doi: 10.1111/j.1432-1033.1971.tb01370.x. [DOI] [PubMed] [Google Scholar]
- Lee L. W., Ravel J. M., Shive W. A general involvement of acceptor ribonucleic acid in the initial activation step of glutamic acid and glutamine. Arch Biochem Biophys. 1967 Sep;121(3):614–618. doi: 10.1016/0003-9861(67)90045-8. [DOI] [PubMed] [Google Scholar]
- Lin C. S., Irwin R., Chirikjian J. G. Kinetic studies of leucyl transfer RNA synthetase from bakers' yeast. Order of addition of substrates and release of products. J Biol Chem. 1975 Dec 25;250(24):9299–9303. [PubMed] [Google Scholar]
- Loftfield R. B. The mechanism of aminoacylation of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1972;12:87–128. doi: 10.1016/s0079-6603(08)60660-1. [DOI] [PubMed] [Google Scholar]
- Mitra S. K., Smith C. J. Absolute requirement for transfer RNA in the activation of arginine by arginyl transfer RNA synthetase of yeast. Biochim Biophys Acta. 1969 Sep 17;190(1):222–224. doi: 10.1016/0005-2787(69)90174-9. [DOI] [PubMed] [Google Scholar]
- Myers G., Blank H. U., Söll D. A comparative study of the interactions of Escherichia coli leucyl-, seryl-, and valyl-transfer ribonucleic acid synthetases with their cognate transfer ribonucleic acids. J Biol Chem. 1971 Aug 25;246(16):4955–4964. [PubMed] [Google Scholar]
- Papas T. S., Peterkofsky A. A random sequential mechanism for arginyl transfer ribonucleic acid synthetase of Escherichia coli. Biochemistry. 1972 Nov 21;11(24):4602–4608. doi: 10.1021/bi00774a029. [DOI] [PubMed] [Google Scholar]
- Parfait R., Grosjean H. Arginyl-transfer ribonucleic-acid synthetase from Bacillus stearothermophilus. Purification, properties and mechanism of action. Eur J Biochem. 1972 Oct;30(2):242–249. doi: 10.1111/j.1432-1033.1972.tb02092.x. [DOI] [PubMed] [Google Scholar]
- RAVEL J. M., WANG S. F., HEINEMEYER C., SHIVE W. GLUTAMYL AND GLUTAMINYL RIBONUCLEIC ACID SYNTHETASES OF ESCHERICHIA COLI W. SEPARATION, PROPERTIES, AND STIMULATION OF ADENOSINE TRIPHOSPHATE-PYROPHOSPHATE EXCHANGE BY ACCEPTOR RIBONUCLEIC ACID. J Biol Chem. 1965 Jan;240:432–438. [PubMed] [Google Scholar]
- Santi D. V., Danenberg P. V., Satterly P. Phenylalanyl transfer ribonucleic acid synthetase from Escherichia coli. Reaction parameters and order of substrate addition. Biochemistry. 1971 Dec 7;10(25):4804–4812. doi: 10.1021/bi00801a031. [DOI] [PubMed] [Google Scholar]
- Santi D. V., Webster R. W., Jr, Cleland W. W. Kinetics of aminoacyl-tRNA synthetases catalyzed ATP-PPi exchange. Methods Enzymol. 1974;29:620–627. doi: 10.1016/0076-6879(74)29054-2. [DOI] [PubMed] [Google Scholar]
- Schmidt J., Wang R., Stanfield S., Reid B. R. Yeast phenylalanyl transfer ribonucleic acid synthetase. Purification, molecular weight, and subunit structure. Biochemistry. 1971 Aug 17;10(17):3264–3268. doi: 10.1021/bi00793a016. [DOI] [PubMed] [Google Scholar]
- Takeda Y., Matsuzaki K. Aminoacyl transfer RNA formation. IV. Kinetic evidence of the concerted mechanism of isoleucyl-tRNA formation stimulated by spermine. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1302–1310. doi: 10.1016/0006-291x(74)90456-2. [DOI] [PubMed] [Google Scholar]
- Thiebe R. A new active intermediate in the aminoacylation of tRNA. FEBS Lett. 1975 Dec 15;60(2):342–345. doi: 10.1016/0014-5793(75)80745-9. [DOI] [PubMed] [Google Scholar]
- Thiebe R. Magnesium ions still necessary in isoleucyl-tRNA formation. FEBS Lett. 1977 Jul 1;79(1):212–214. doi: 10.1016/0014-5793(77)80386-4. [DOI] [PubMed] [Google Scholar]
- Thiebe R., Zachau H. G. A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Eur J Biochem. 1968 Sep 24;5(4):546–555. doi: 10.1111/j.1432-1033.1968.tb00404.x. [DOI] [PubMed] [Google Scholar]
- Wintermeyer W., Zachau H. G. Tertiary structure interactions of 7-methylguanosine in yeast tRNA Phe as studied by borohydride reduction. FEBS Lett. 1975 Oct 15;58(1):306–309. doi: 10.1016/0014-5793(75)80285-7. [DOI] [PubMed] [Google Scholar]
- von der Haar F. Affinity elution as a purification method for aminoacyl-tRNA synthetases. Eur J Biochem. 1973 Apr 2;34(1):84–90. doi: 10.1111/j.1432-1033.1973.tb02731.x. [DOI] [PubMed] [Google Scholar]
