Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 2012 Aug;50(8):2761–2766. doi: 10.1128/JCM.06477-11

Detection of Carbapenemase Producers in Enterobacteriaceae by Use of a Novel Screening Medium

Patrice Nordmann 1,, Delphine Girlich 1, Laurent Poirel 1
PMCID: PMC3421537  PMID: 22357501

Abstract

A Drigalski agar-based culture medium containing an ertapenem, cloxacillin, and zinc sulfate (Supercarba medium) was tested for screening carbapenemase-producing members of the family Enterobacteriaceae. OXA-48 (n = 44), NDM (n = 25), VIM or IMP (n = 27), and KPC producers (n = 18) were detected with a low detection limit. Its overall sensitivity (95.6%) was higher than those of the currently available ChromID ESBL (bioMérieux) and CHROMagar KPC (CHROMagar) screening media. The Supercarba medium provides a significant improvement for detection of the most common types of carbapenemase producers.

TEXT

A variety of carbapenemases are increasingly reported in members of the family Enterobacteriaceae worldwide. Carbapenemase producers are becoming a source of therapeutic failures in both hospital- and community-acquired infections. The detection of infected patients and carriers with multidrug-resistant isolates is therefore becoming a major issue, and it is a major health issue to prevent the spread of these isolates. The clinically significant carbapenemases in Enterobacteriaceae belong to several Ambler classes of β-lactamases that differ by chemical structures and biochemical properties (1). They are mostly of the Ambler class A (KPC) that hydrolyze all β-lactams, of the zinc-dependent Ambler class B (NDM, VIM, and IMP) that hydrolyze all β-lactams except aztreonam, and of the Ambler class D (OXA-48-like) that hydrolyze carbapenems and weakly hydrolyze (or do not hydrolyze) broad-spectrum cephalosporins (2, 5, 6, 8, 13, 1517, 2022). The level of resistance to carbapenems provided by those carbapenemase producers may vary significantly, making their detection difficult when based only on high-level carbapenem resistance (3, 4, 11, 12). A medium initially designed to screen for extended-spectrum β-lactamase (ESBL) producers that contains cefpodoxime (ChromID ESBL; bioMérieux, La Balme-les-Grottes, France) and a carbapenem-containing medium (CHROMagar KPC; CHROMagar Company, Paris, France) (11, 23, 24) were evaluated for screening carbapenemase producers. Both media contained chromogenic molecules that may contribute to the recognition of enterobacterial species. The ChromID ESBL medium has good sensitivity; its main disadvantage is its lack of detection of OXA-48-like producers that are susceptible to cefpodoxime in the absence of coproduction of an ESBL (3). In addition, this medium lacks specificity, since the widespread ESBL producers may be coselected on that medium. The CHROMagar KPC medium detects carbapenemase producers only if they are resistant to high levels of carbapenems. Therefore, its main disadvantage remains its lack of sensitivity, since it does not detect carbapenemase producers with a low level of resistance to carbapenems (3, 16). This is the case for many KPC-, IMP-, VIM-, NDM-, and OXA-48-producing Escherichia coli and Klebsiella pneumoniae.

Taking into account the current importance of detecting carbapenemase producers with accuracy, we have designed a novel screening medium called Supercarba medium. The rationale for the design of this medium was that it should be able to detect carbapenemase producers with low-level resistance to carbapenems and be as selective as possible by inhibiting the growth of carbapenem-resistant but non-carbapenemase-producing isolates.

Different concentrations of several carbapenem molecules were tested, and finally, ertapenem was added to Drigalski agar medium at a concentration of 0.25 μg/ml. ZnSO4 (70 μg/ml) was added to improve expression of metallo-β-lactamases (MBLs) by MBL producers (12). Cloxacillin (250 μg/ml), which is a cephalosporinase (AmpC-type β-lactamase) inhibitor, was used to prevent growth of isolates expressing high levels of cephalosporinases, such as Enterobacter cloacae, Enterobacter aerogenes, Morganella morgannii, and Serratia marcescens. These isolates are clinically significant sources of carbapenem resistance associated with an outer membrane permeability defect (9, 14).

A total of 114 carbapenemase-producing isolates belonging to various enterobacterial species of worldwide origin were included in the study, all having a β-lactamase content characterized at the molecular level (Table 1). The strains were as follows: KPC producers (n = 18), VIM producers (n = 12), IMP producers (n = 15), NDM-1 producers (n = 25), together with OXA-48- (n = 41) and OXA-181 producers (n = 3). Seventy-five of those isolates coexpressed an ESBL (Table 1). Strains that did not express any carbapenemase were used as controls, consisting of isolates showing reduced susceptibility to ertapenem due to an overexpressed AmpC (n = 10), or to an ESBL (n = 12), and/or porin deficiency. Wild-type ertapenem-susceptible isolates, restricted-spectrum β-lactamase producers, ESBL producers, and high-level AmpC producers were also included as controls (n = 40) (Table 1). Using an inoculum of ∼2 × 107 CFU/ml (range, 1.5 × 107 to 3.5 × 108 CFU/ml), serial 10-fold dilutions of the isolates were made in normal saline, and 100-μl portions were plated onto the Supercarba medium and compared to results obtained using CHROMagar KPC and ChromID ESBL media. Viable bacteria were counted after 24 h of culture at 37°C. The sensitivity and specificity cutoff values were set at 1 × 103 CFU/ml, i.e., a limit value of 1 × 103 CFU/ml and above was considered “not efficiently detected.”

Table 1.

MICs and limits of detection of Supercarba, ChromID ESBL, and CHROMagar KPC mediaa

Strain β-Lactamase contentb MIC (μg/ml) of antibioticc
Lowest detection limit (CFU/ml) for the following mediumd:
IPM ETP MEM Supercarba ChromID ESBL CHROMagar KPC
Ambler class A carbapenemase (KPC)-producing strains
    K. pneumoniae 2303 KPC-2 + SHV-11 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae LIE KPC-2 + TEM-1 + OXA-9 >32 >32 >32 5 × 101 1 × 101 1 × 101
    K. pneumoniae GES KPC-2 + TEM-1 + SHV-11 6 12 1.5 1 × 101 1 × 101 1 × 103
    K. pneumoniae 588 KPC-2 + TEM-1 + SHV-11 + OXA-9 24 32 16 1 × 101 1 × 101 1 × 101
    K. pneumoniae YC KPC-2 + TEM-1 + SHV-11 + SHV-12 + OXA-9 4 24 2 1 × 101 1 × 101 1 × 101
    K. pneumoniae A28006 KPC-2 + TEM-1 + CTX-M-2 + SHV-11 16 24 32 2 × 101 1 × 101 1 × 101
    K. pneumoniae A33504 KPC-2 + TEM-1 + SHV-11 + CTX-M-2 + OXA-9 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae MUS KPC-2 + TEM-1 + SHV-11 + SHV-12 0.75 4 1.5 1 × 101 1 × 101 1 × 103
    K. pneumoniae KAM KPC-3 + TEM-1 + SHV-11 8 12 2 1 × 101 1 × 101 5 × 103
    E. coli PSP KPC-2 + TEM-1 + OXA-1 0.5 0.5 0.5 1 × 102 1 × 101 1 × 104
    E. coli DIN KPC-2 + TEM-1 + OXA-1 1 >32 0.5 1 × 101 1 × 101 1 × 101
    E. coli COL KPC-2 + TEM-1 + CTX-M-9 4 4 2 1 × 101 1 × 101 1 × 103
    E. coli LIL KPC-2 + TEM-1 + OXA-9 2 1.5 1 1 × 101 1 × 101 1 × 101
    E. cloacae HMG KPC-2 + TEM-1 24 >32 16 1 × 102 1 × 101 1 × 101
    E. cloacae CFVL KPC-2 + TEM-3 4 2 1 1 × 101 1 × 101 5 × 105
    E. cloacae HPTU KPC-2 + TEM-1 + SHV-11 2 4 1.5 1 × 101 1 × 101 1 × 101
    S. marcescens D6403 KPC-2 + TEM-1 >32 >32 >32 1 × 101 1 × 101 1 × 101
    S. marcescens C7052 KPC-2 + TEM-1 + SHV-12 >32 >32 >32 1 × 101 1 × 101 1 × 101
Ambler class B carbapenemase-producing strains
    K. pneumoniae OMA419 NDM-1 + OXA-1 1.5 6 2 1 × 101 1 × 101 1 × 102
    K. pneumoniae KI2 NDM-1 + CTX-M-15 + OXA-1 1 8 4 1 × 101 1 × 101 1 × 101
    K. pneumoniae UK NDM-1 + CTX-M-15 + CMY-4 + OXA-1 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae 6642 GEN NDM-1 + CTX-M-15 + OXA-1 + OXA-10 1 16 3 1 × 101 1 × 101 1 × 101
    K. pneumoniae 6759 GEN NDM-1 + CTX-M-15 + CMY-16 + OXA-1 + OXA-9 + OXA-10 12 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae OMA601 NDM-1 + CTX-M-15 + OXA-1 + OXA-9 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae 7AFR NDM-1 + TEM-1 + CTX-M-15 + CMY-6 + OXA-1 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae OM2 NDM-1 + TEM-1+ CTX-M-3 + SHV-11 + OXA-1 0.75 8 1.5 1 × 101 1 × 101 3 × 104
    K. pneumoniae OM4 NDM-1 + TEM-1 + CTX-M-15 + SHV-12 + OXA-9 4 >32 16 1 × 101 1 × 101 1 × 101
    K. pneumoniae OM8 NDM-1 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1 2 >32 4 2 × 101 1 × 101 1 × 102
    K. pneumoniae OM13 NDM-1+ TEM-1 + CTX-M-15 + SHV-28 + OXA-1 + OXA-9 3 4 2 1 × 101 1 × 101 3 × 104
    K. pneumoniae OM15 NDM-1 + CTX-M-15 + SHV-130 + OXA-1 1.5 12 3 1 × 101 1 × 101 3 × 105
    K. pneumoniae OM16 NDM-1 + CTX-M-15 + OXA-1 + OXA-181 8 >32 16 3 × 101 1 × 101 1 × 101
    K. pneumoniae OM19 NDM-1 + CTX-M-15 + SHV-12 + OXA-1 4 24 8 1 × 101 1 × 101 4 × 102
    K. pneumoniae KIE NDM-1 + SHV-38 + CMY-16 + OXA-10 0.75 2 1 1 × 101 1 × 101 1 × 104
    E. coli GUE NDM-1 + TEM-1 + OXA-1 3 3 2 1 × 101 1 × 101 1 × 105
    E. coli AUS NDM-1 + TEM-1 + CTX-M-15 6 32 16 1 × 101 1 × 101 1 × 101
    E. coli IR5 NDM-1 + TEM-1 + CTX-M-15 16 >32 16 1 × 101 1 × 101 1 × 101
    E. coli GEN NDM-1 + TEM-1 + CMY-30 + OXA-1 8 >32 12 1 × 101 1 × 101 1 × 101
    E. coli RIC NDM-1 + CMY-16 + OXA-1 + OXA-10 1 3 1 1 × 101 1 × 101 1 × 105
    E. coli ALL NDM-1 + TEM-1 + CTX-M-15 + OXA-1 + OXA-2 4 >32 8 1 × 101 1 × 101 1 × 101
    E. coli OM20 NDM-1+ TEM-1 + CTX-M-15 2 >32 8 1 × 101 1 × 101 1 × 101
    E. cloacae IR38 NDM-1 + CTX-M-15 2 16 2 1 × 101 3 × 102 4 × 104
    P. stuartii PS1 NDM-1 + CMY-6 + OXA-1 12 0.38 1.5 1 × 107 1 × 103 1 × 107
    C. freundii STE NDM-1 + TEM-1 + CTX-M-15 + VIM-4 + OXA-1 + OXA-9 + OXA-10 + OXA-181 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae 0404024 VIM-1 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae 0511135 VIM-1 + SHV-12 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae 0404020 VIM-1 + SHV-5 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae ENN VIM-1 + SHV-5 0.5 1.5 0.38 1 × 101 1 × 101 1 × 101
    K. pneumoniae MAD VIM-1 + CTX-M-3 1 0.5 1 1 × 101 3 × 101 2 × 104
    E. coli DIH VIM-19 8 16 4 1 × 101 1 × 101 1 × 101
    E. coli 0404018 VIM-1 + CMY-6 3 1.5 1 5 × 101 1 × 101 >1 × 108
    E. coli 1008077 VIM-1 + TEM-1 + CTX-M-15 >32 4 4 1 × 101 1 × 101 >1 × 108
    E. coli MAD VIM-1 + CTX-M-3 1.5 0.38 0.5 1 × 105 1 × 101 2 × 105
    E. cloacae KAR VIM-1 + SHV-70 1 0.38 0.5 1 × 106 1 × 101 >1 × 108
    E. cloacae 1008029 VIM-1 + CTX-M-3 >32 >32 >32 2 × 101 1 × 101 1 × 101
    S. marcescens 1008091 VIM-1 + CTX-M-15 >32 >32 >32 1 × 101 1 × 101 1 × 101
    K. pneumoniae TUR IMP-1 1 2 8 1 × 106 2 × 101 1 × 101
    K. pneumoniae 0709121 IMP-1 1.5 3 1 1 × 101 1 × 101 1 × 103
    K. pneumoniae 0709124 IMP-1 + TEM-15 8 3 2 1 × 101 1 × 101 1 × 104
    K. pneumoniae 0709125 IMP-1 + TEM-1 + SHV-12 1.5 4 2 1 × 101 1 × 101 1 × 103
    K. pneumoniae 0709127 IMP-1 + TEM-1 0.5 4 1 1 × 101 1 × 101 1 × 104
    K. pneumoniae TWA IMP-8 1 1 0.5 1 × 101 1 × 101 >1 × 108
    K. pneumoniae TAW IMP-8 + SHV-12 0.5 0.5 0.5 4 × 102 1 × 101 >1 × 108
    E. coli JAP IMP-1 0.5 3 0.5 1 × 104 1 × 101 2 × 105
    E. coli TWA IMP-8 + SHV-12 6 8 3 1 × 101 1 × 101 1 × 101
    E. coli 1108013 IMP-1 + TEM-1 0.5 4 1 1 × 101 1 × 101 1 × 106
    E. cloacae TWA IMP-8 1.5 1 1 1 × 101 1 × 101 1 × 102
    E. cloacae TAW IMP-8 + SHV-12 0.75 0.5 0.5 1 × 102 1 × 101 >1 × 108
    E. cloacae 1008079 IMP-1 8 >32 >32 1 × 101 1 × 102 1 × 107
    E. cloacae 1008187 IMP-1 + CTX-M-15 8 >32 4 1 × 101 1 × 101 1 × 104
    S. marcescens 0911033 IMP-1 >32 >32 >32 1 × 101 1 × 101 1 × 101
Ambler class D carbapenemase-producing strains
    K. pneumoniae BIC OXA-48 0.5 2 0.5 1 × 101 >1 × 108 5 × 106
    K. pneumoniae BEL OXA-48 1 4 1 1 × 101 >1 × 108 1 × 106
    K. pneumoniae RAM OXA-48 1 4 1 1 × 101 >1 × 108 1 × 105
    K. pneumoniae LIB OXA-48 16 16 16 1 × 101 >1 × 108 5 × 104
    K. pneumoniae BOU OXA-48 0.38 0.5 0.25 1 × 101 >1 × 108 1 × 108
    K. pneumoniae SCO OXA-48 0.5 0.75 0.25 1 × 101 >1 × 108 >1 × 108
    K. pneumoniae LOU OXA-48 4 16 0.5 1 × 101 >1 × 108 >1 × 108
    K. pneumoniae TIK OXA-48 0.75 2 0.38 1 × 101 >1 × 108 >1 × 108
    K. pneumoniae OM14 OXA-48 + TEM-1 0.5 1 0.38 1 × 101 >1 × 108 5 × 107
    K. pneumoniae CHA OXA-48 + TEM-1 0.38 1 0.5 1 × 101 >1 × 108 >1 × 108
    K. pneumoniae EGY OXA-48 + CTX-M-15 2 3 2 1 × 101 2 × 101 1 × 105
    K. pneumoniae ROU OXA-48 + CTX-M-15 0.5 1.5 0.25 1 × 101 1 × 101 >1 × 108
    K. pneumoniae BEY OXA-48 + TEM-1 + CTX-M-15 0.38 0.38 0.38 5 × 102 1 × 101 1 × 108
    K. pneumoniae DAL OXA-48 + TEM-1 + CTX-M-15 0.38 2 0.38 1 × 101 1 × 101 4 × 105
    K. pneumoniae BAJ OXA-48+ TEM-1 + CTX-M-15 + SHV-28 0.5 1.5 0.38 1 × 101 1 × 101 >1 × 108
    K. pneumoniae BEN OXA-48 + TEM-1 + CTX-M-15 + SHV-28 0.38 1 0.25 1 × 101 1 × 101 >1 × 108
    K. pneumoniae DUW OXA-48 + TEM-1 + CTX-M-15 + SHV-28 32 32 32 1 × 101 1 × 101 1 × 101
    K. pneumoniae SIC OXA-48 + CTX-M-15 + SHV-28 0.25 1 0.25 1 × 101 1 × 101 >1 × 108
    K. pneumoniae AEL OXA-48 + CTX-M-15 + SHV-28 + OXA-1 0.5 6 0.38 1 × 101 1 × 101 5 × 102
    K. pneumoniae AMS OXA-48 + TEM-1 + CTX-M-15 + OXA-1 0.5 2 0.38 1 × 101 1 × 101 >1 × 108
    K. pneumoniae ELK OXA-48 + TEM-1 + CTX-M-15 + SHV-11 0.5 3 0.38 1 × 101 1 × 101 >1 × 108
    K. pneumoniae VER OXA-48 + TEM-1 + CTX-M-15 + SHV-11 0.38 2 0.38 1 × 101 1 × 101 >1 × 108
    K. pneumoniae VSG OXA-48 + TEM-1 + CTX-M-15 + OXA-1 0.75 3 0.75 1 × 101 1 × 101 >1 × 108
    K. pneumoniae HPA OXA-48 + TEM-1 + CTX-M-15 + OXA-1 1.5 >32 12 1 × 101 1 × 101 >1 × 108
    K. pneumoniae OM11 OXA-48 + TEM-1 + CTX-M-14 0.5 0.75 0.25 1 × 101 1 × 101 5 × 107
    K. pneumoniae DIA OXA-48 + TEM-1b + CTX-M-15 + SHV-11 + OXA-1 >32 >32 >32 1 × 101 1 × 101 1 × 101
    E. coli ROB OXA-48 0.5 0.75 0.25 2 × 101 >1 × 108 >1 × 108
    E. coli HAN OXA-48 + CTX-M-15 3 16 1 5 × 101 1 × 101 3 × 104
    E. coli BOU OXA-48 + CTX-M-15 0.5 0.75 0.125 2 × 101 1 × 101 >1 × 108
    E. coli OM3 OXA-48 + TEM-1 + CTX-M-15 0.5 1 0.38 1 × 101 1 × 101 >1 × 108
    E. coli OM22 OXA-48 + TEM-1 + CTX-M-15 0.5 1 0.25 1 × 101 1 × 101 >1 × 108
    E. coli BER OXA-48 + TEM-1 + CTX-M-15 0.38 1.5 0.19 5 × 101 1 × 101 >1 × 108
    E. coli AME OXA-48 + CTX-M-24 0.25 0.5 0.19 2 × 101 1 × 101 >1 × 108
    E. coli ZAN OXA-48 + TEM-1 + CTX-M-14 0.38 8 0.75 1 × 101 1 × 101 >1 × 108
    E. coli BON OXA-48 + TEM-1 + CTX-M-24 0.38 0.5 0.19 1 × 101 1 × 101 >1 × 108
    E. coli BOK OXA-48 + CTX-M-15 0.25 0.38 0.19 2 × 101 1 × 101 >1 × 108
    E. cloacae TUR OXA-48 + SHV-5 0.5 0.5 0.5 1 × 101 2 × 101 1 × 107
    E. cloacae 501 OXA-48 + TEM-1 + CTX-M-15 1 16 1.5 1 × 101 1 × 101 1 × 101
    E. cloacae BEU OXA-48 + TEM-1 + CTX-M-15 + SHV-12 0.5 8 0.5 1 × 101 1 × 101 1 × 104
    C. koseri ROU OXA-48 0.38 2 0.38 1 × 101 >1 × 108 >1 × 108
    C. koseri VER OXA-48 0.75 2 0.38 1 × 101 >1 × 108 >1 × 108
    K. pneumoniae HOL OXA-181 + CTX-M-15 1 4 1 1 × 101 1 × 101 1 × 101
    K. pneumoniae OMA OXA-181 + CTXM-15 + OXA-1 0.5 2 0.5 1 × 101 1 × 101 >1 × 108
    P. rettgeri RAP OXA-181 + OXA-1 8 1 2 5 × 102 1 × 101 1 × 101
Non-carbapenemase-producing strains
    K. pneumoniae 7725 SHV-1 0.19 0.006 0.032 >1 × 108 >1 × 108 >1 × 108
    K. pneumoniae 0227 SHV-1 0.19 0.008 0.016 >1 × 108 >1 × 108 >1 × 108
    K. pneumoniae 648236e SHV-2a 0.25 2 0.38 1 × 102 1 × 101 >1 × 108
    K. pneumoniae 1022 SHV-2a + SHV-28 0.5 0.016 0.023 >1 × 108 1 × 101 >1 × 108
    K. pneumoniae BERe SHV-28 + TEM-1 1 4 1 1 × 102 1 × 103 1 × 103
    K. pneumoniae KPN CTX-M-15 0.12 0.012 0.012 1 × 107 1 × 101 >1 × 108
    K. pneumoniae 10112 CTX-M-15 + TEM-1 + SHV-11 0.5 0.016 0.023 6 × 107 1 × 101 >1 × 108
    K. pneumoniae 1025 CTX-M-14 + TEM-1 + SHV-11 0.12 0.016 0.016 >1 × 108 1 × 101 >1 × 108
    K. pneumoniae MEKe CTX-M-15 + SHV-11 1.5 >32 6 1 × 101 1 × 101 1 × 101
    K. pneumoniae SIMe CTX-M-15 + TEM-1 + SHV-1 8 >32 6 1 × 101 1 × 101 1 × 102
    K. pneumoniae SHMe CTX-M-15 +TEM-1 + SHV-11 3 >32 3 1 × 101 1 × 101 1 × 101
    K. pneumoniae COOe CTX-M-15 + SHV-28 8 >32 4 1 × 101 1 × 101 1 × 101
    K. pneumoniae FOSe CTX-M-15 + TEM-1 + SHV-11 6 >32 >32 1 × 102 1 × 101 1 × 101
    K. pneumoniae BEDe CTX-M-15 + TEM-1 + SHV-11 1.5 >32 4 1 × 101 1 × 101 1 × 101
    K. pneumoniae SHIe CTX-M-15 + TEM-1 + SHV-11 0.25 1 1 7 × 104 1 × 101 >1 × 108
    K. pneumoniae LEGe CTX-M-15 + TEM-1 + SHV-12 0.75 >32 3 2 × 104 2 × 101 2 × 101
    K. pneumoniae ALEe CTX-M-15 + SHV-1 1 >32 4 1 × 105 1 × 101 1 × 101
    K. pneumoniae KDHf DHA-2 0.12 0.5 0.12 1 × 102 1 × 101 >1 × 108
    E. coli 6252 None (wild type) 0.12 0.004 0.008 >1 × 108 >1 × 108 >1 × 108
    E. coli 6367 None (wild type) 0.19 0.006 0.012 >1 × 108 >1 × 108 >1 × 108
    E. coli 1082 TEM-1 0.19 0.019 0.016 >1 × 108 >1 × 108 >1 × 108
    E. coli 1034 TEM-1 + SHV-38 0.19 0.006 0.016 >1 × 108 >1 × 108 >1 × 108
    E. coli 1048 TEM-1 + SHV-2a 0.19 0.012 0.016 >1 × 108 1 × 101 >1 × 108
    E. coli 1008 CTX-M-1 + TEM-1 0.19 0.016 0.016 >1 × 108 1 × 101 >1 × 108
    E. coli 10122 CTX-M-1 + TEM-1 0.19 0.016 0.016 >1 × 108 1 × 101 >1 × 108
    E. coli 1020 CTX-M-1 + TEM-1 0.19 0.023 0.016 >1 × 108 1 × 101 >1 × 108
    E. coli 10121 CTX-M-2 0.19 0.016 0.016 >1 × 108 1 × 101 >1 × 108
    E. coli 1023 CTX-M-2 + TEM-1 0.12 0.016 0.016 >1 × 108 1 × 101 >1 × 108
    E. coli E14 CTX-M-14 0.12 0.012 0.012 >1 × 108 1 × 101 >1 × 108
    E. coli FOR CTX-M-15 0.12 0.012 0.012 >1 × 108 1 × 101 >1 × 108
    E. coli 1033 CTX-M-15 0.19 0.012 0.016 >1 × 108 1 × 101 >1 × 108
    E. coli EVB VEB-1 0.12 0.012 0.012 >1 × 108 1 × 101 >1 × 108
    E. coli 1092 OXA-1 0.12 0.19 0.023 >1 × 108 1 × 101 >1 × 108
    E. coli ECA ACC-1 0.12 0.012 0.012 >1 × 108 5 × 103 >1 × 108
    E. coli SYD CMY-2 0.12 0.012 0.012 >1 × 108 1 × 101 >1 × 108
    E. coli MET Chromosome-encoded extended-spectrum cephalosporinase 0.12 0.012 0.012 >1 × 108 1 × 101 >1 × 108
    E. coli MARf Overexpressed AmpC 16 >32 2 1 × 102 1 × 101 1 × 101
    E. coli HB4e (OmpC, OmpF) None 0.12 1 0.25 1 × 101 >1 × 108 >1 × 108
    E. aerogenes 1009 TEM-24 0.19 0.12 0.016 >1 × 108 1 × 101 >1 × 108
    E. aerogenes 1085 TEM-24 0.12 0.19 0.023 >1 × 108 1 × 101 >1 × 108
    E. cloacae 7746 None (wild type) 0.38 0.064 0.032 >1 × 108 >1 × 108 >1 × 108
    E. cloacae 7725 None (wild type) 0.19 0.008 0.012 >1 × 108 >1 × 108 >1 × 108
    E. cloacae 5434 None (wild type) 0.38 0.016 0.032 >1 × 108 >1 × 108 >1 × 108
    E. cloacae 1012 TEM-1 + SHV-12 0.19 0.016 0.016 >1 × 108 1 × 101 >1 × 108
    E. cloacae 1072f TEM-1 + OXA-1 0.38 0.5 0.064 >1 × 108 1 × 101 >1 × 108
    E. cloacae CLO CTX-M-15 0.12 0.12 0.12 1 × 107 1 × 101 >1 × 108
    E. cloacae 10111f TEM-1 + CTX-M-15 0.5 0.75 0.094 >1 × 108 1 × 101 >1 × 108
    E. cloacae 1027 TEM-1 + CTX-M-15 0.19 0.016 0.016 >1 × 108 1 × 101 >1 × 108
    E. cloacae CVB VEB-1 0.12 0.12 0.12 1 × 104 1 × 101 >1 × 108
    E. cloacae 1019f TEM-1 0.25 1 0.094 >1 × 108 1 × 101 >1 × 108
    E. cloacae ARFf Overexpressed AmpC 0.12 1 0.12 1 × 107 1 × 101 >1 × 108
    E. cloacae BLAf Overexpressed AmpC 0.12 1 0.12 1 × 107 1 × 101 >1 × 108
    E. cloacae CONf Overexpressed AmpC 0.25 4 0.25 1 × 107 1 × 101 >1 × 108
    E. cloacae AZAf Overexpressed AmpC 0.12 1 0.12 1 × 107 1 × 106 >1 × 108
    C. freundii 7767 None (wild type) 0.25 0.008 0.016 >1 × 108 >1 × 108 >1 × 108
    C. freundii 10107 TEM-1 + SHV-12 0.38 0.016 0.023 >1 × 108 1 × 101 >1 × 108
    C. freundii 1003 CTX-M-15 + TEM-1 0.38 0.016 0.023 >1 × 108 1 × 101 >1 × 108
    C. freundii 10135 CTX-M-15 0.38 0.016 0.023 >1 × 108 1 × 101 >1 × 108
    C. freundii MAUf Overexpressed AmpC + TEM-3 1 8 1 1 × 105 1 × 101 1 × 105
    S. Typhimurium 1081 CTX-M-1 0.25 0.19 0.032 >1 × 108 1 × 101 >1 × 108
    P. mirabilis 1031 CTX-M-14 + TEM-1 + SHV-11 1.5 0.047 0.032 >1 × 108 1 × 101 >1 × 108
    P. mirabilis PMA ACC-1 0.25 0.094 0.064 >1 × 108 >1 × 108 >1 × 108
a

The MICs of imipenem, ertapenem, and meropenem and the detection limits of Supercarba medium for 176 carbapenemase- and/or ESBL/AmpC-producing enterobacterial isolates compared to the detection limits obtained with ChromID ESBL and CHROMagar KPC media are shown. The 176 enterobacterial isolates belong to the following species: Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Serratia marcescens, Providencia stuartii, Citrobacter freundii, Citrobacter koseri, Providencia rettgeri, Enterobacter aerogenes, Salmonella enterica serotype Typhimurium, and Proteus mirabilis.

b

β-Lactamase names shown in boldface type are carbapenemases.

c

Abbreviations: IMP, imipenem; ETP, ertapenem; MP, meropenem.

d

Underlined CFU counts are considered negative results (cutoff values set at ≥1 × 103 CFU/ml).

e

Reduced susceptibility to ertapenem due to porin deficiency.

f

Reduced susceptibility to ertapenem due to overexpressed AmpC.

The lowest limit of detection of OXA-48, OXA-181, NDM-1, and KPC producers ranged from 1 × 101 to 1 × 102 CFU/ml (Table 1). A single NDM producer (NDM-1-producing Providencia stuartii isolate [19]) was not efficiently detected on the Supercarba medium (detection limit of 1 × 107 CFU/ml) (Table 1). Its lack of detection might be explained by its low MIC value of ertapenem (0.38 μg/ml) and a likely weak expression of the blaNDM-1 gene, related to chromosomal insertion of the blaNDM-1 gene. As expected, OXA-181-producing K. pneumoniae was also detected well with the Supercarba medium. The lowest limit of detection of VIM and IMP producers ranged from 1 × 101 to 1 × 106 CFU/ml (Table 1). Although the addition of zinc sulfate significantly decreased the detection limits for VIM and IMP producers, a few VIM and IMP producers were not efficiently detected on this medium (detection limit of ≥1 × 103 CFU/ml). As expected, growth of isolates that do not express any carbapenemase (i.e., AmpC and/or ESBL producers) were inhibited by the Supercarba medium (with a detection limit much higher than 1 × 103 CFU/ml). In particular, the addition of cloxacillin prevented growth of the isolates expressing cephalosporinases (Table 1). As previously shown, a porin defect resulting in a decreased outer membrane permeability leads to a reduced susceptibility to ertapenem of E. coli and K. pneumoniae (7, 9, 10). In this study, among the 19 non-ertapenem-susceptible isolates with MIC values of ertapenem of >0.25 μg/ml (1 Citrobacter freundii isolate, 2 E. coli isolates, 4 Enterobacter cloacae isolates, and 12 K. pneumoniae isolates) and for which a porin defect was involved in ertapenem resistance, 58% (n = 11) were detected by selection on the Supercarba medium (lower detection limit of ≤102 CFU/ml) (Table 1). The addition of zinc sulfate and cloxacillin was useful for prevention of growth of many non-carbapenemase-producing carbapenem-resistant isolates (up to 42%; n = 8). Noticeably, non-carbapenemase-producing Acinetobacter baumannii and Pseudomonas aeruginosa grew on the Supercarba medium (data not shown). Similar growth results of nonenterobacterial Gram-negative rods were obtained using the ChromID ESBL and CHROMagar KPC media (data not shown). These three media are suitable only for selection of members of the Enterobacteriaceae.

A comparison of the results obtained with the ChromID ESBL and CHROMagar KPC media with those obtained with the Supercarba medium showed that the latter screening medium is more efficient in detecting carbapenemase-producing isolates (Tables 1 and 2). Indeed, the sensitivity of the Supercarba medium was 95.6%, which was higher than the sensitivity of the ChromID ESBL (87.7%) medium and of the CHROMagar KPC (40.3%) medium. Moreover, the sensitivities of the Supercarba medium determined for each class of carbapenemase producers was higher (100%, 90%, and 100% for classes A, B, and D, respectively) than those obtained for the two other screening media (Table 2). The specificity of the Supercarba medium was also high (82.2%). A further improvement of the Supercarba medium would be the addition of chromogenic molecules that would permit recognition of species.

Table 2.

Sensitivity and specificity of Supercarba, ChromID ESBL, and CHROMagar KPC media

Sensitivity or specificity Value for sensitivity (%) or specificity (%) on the following medium:
Supercarba ChromID ESBL CHROMagar KPC
Sensitivity 95.6 87.7 40.3
Specificity 82.2 24.2 85.5
Sensitivity for Ambler class of carbapenemasea
    Class A 100 100 66.7
    Class B 90 98 55.8
    Class D 100 70 13.6
a

Sensitivity was determined for each Ambler class of carbapenemase: class A carbapenemases are of the KPC type, class B carbapenemases are of the VIM, IMP, and NDM types, whereas class D carbapenemases are of the OXA-48 type.

To assess the storage ability of the Supercarba medium, E. cloacae ARF that overexpressed AmpC was subcultured daily onto Drigalski agar plates from a single batch of Supercarba medium stored at 4°C. Growth of this isolate was consistently inhibited on the Supercarba agar during a 7-day period.

We propose here the very first screening medium that may detect not only KPC and MBL producers but also OXA-48 producers. This medium represents a significant improvement compared to the available screening media to detect carbapenemase producers, and particularly for detection of OXA-48 producers that do not coexpress any ESBL. Taking into account the fact that Supercarba medium contains ertapenem at a low concentration, using this medium may detect carbapenemase producers with low-level resistance to carbapenems, which is a situation frequently observed for OXA-48 producers. In addition, this medium is useful for selecting specifically carbapenemase producers in stools that also contain a large amount of ESBL producers and inhibiting the growth of ESBL producers. This property is particularly relevant, since high rates of ESBL carriage are now reported worldwide (18).

Finally, a further improvement of the Supercarba medium would be the addition of chromogenic molecules for identification of enterobacterial species.

ACKNOWLEDGMENT

This work was funded by a grant from the INSERM (UMR914), Paris, France.

Footnotes

Published ahead of print 22 February 2012

REFERENCES

  • 1. Ambler RP, et al. 1991. A standard numbering scheme for class A β-lactamases. Biochem. J. 276:269–272 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Carrër A, et al. 2010. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob. Agents Chemother. 54:1369–1373 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Carrër A, Fortineau N, Nordmann P. 2010. Use of ChromID extended-spectrum β-lactamase medium for detecting carbapenemase-producing Enterobacteriaceae. J. Clin. Microbiol. 48:1913–1914 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Castanheira M, et al. 2011. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob. Agents Chemother. 55:1274–1278 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Cuzon G, et al. 2010. Worldwide diversity of Klebsiella pneumoniae that produce beta-lactamase blaKPC-2 gene. Emerg. Infect. Dis. 16:1349–1356 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Cuzon G, Ouanich J, Gondret R, Naas T, Nordmann P. 2011. Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob. Agents Chemother. 55:2420–2423 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Doumith M, Ellington MJ, Livermore DM, Woodford N. 2009. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J. Antimicrob. Chemother. 63:659–667 [DOI] [PubMed] [Google Scholar]
  • 8. Fukigai S, et al. 2007. Nosocomial outbreak of genetically related IMP-1 β-lactamase-producing Klebsiella pneumoniae in a general hospital in Japan. Int. J. Antimicrob. Agents 29:306–310 [DOI] [PubMed] [Google Scholar]
  • 9. Girlich D, Poirel L, Nordmann P. 2009. CTX-M expression and selection of ertapenem resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrob. Agents Chemother. 53:832–834 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Jacoby GA, Mills DM, Chow N. 2004. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48:3203–3206 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Landman D, Salvani JK, Bratu S, Quale J. 2005. Evaluation of techniques for detection of carbapenem-resistant Klebsiella pneumoniae in stool surveillance cultures. J. Clin. Microbiol. 43:5639–5641 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Lee K, Lim YS, Yong D, Yum JH, Chong Y. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 10:4623–4629 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Liao IC, et al. 2011. Metallo-β-lactamase-producing Enterobacteriaceae isolates at a Taiwanese hospital: lack of distinctive phenotypes for screening. APMIS 119:543–550 [DOI] [PubMed] [Google Scholar]
  • 14. Mammeri H, Nordmann P, Berkani A, Eb F. 2008. Contribution of extended-spectrum AmpC (ESAC) β-lactamases to carbapenem resistance in Escherichia coli. FEMS Microbiol. Lett. 282:238–240 [DOI] [PubMed] [Google Scholar]
  • 15. Nordmann P, Cuzon G, Naas T. 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 9:228–236 [DOI] [PubMed] [Google Scholar]
  • 16. Nordmann P, Naas T, Poirel L. 2011. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17:1791–1798 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Nordmann P, Poirel L, Walsh TR, Livermore DM. 2011. The emerging NDM carbapenemases. Trends Microbiol. 19:588–595 [DOI] [PubMed] [Google Scholar]
  • 18. Pitout JD, Laupland KB. 2008. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8:159–166 [DOI] [PubMed] [Google Scholar]
  • 19. Poirel L, Dortet L, Bernabeu S, Nordmann P. 2011. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55:5403–5407 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Poirel L, Pitout JD, Nordmann P. 2007. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol. 2:501–512 [DOI] [PubMed] [Google Scholar]
  • 21. Potron A, et al. 2011. Characterization of OXA-181, a carbapenem-hydrolyzing class D β-lactamase from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55:4896–4899 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Psichogiou M, et al. 2008. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J. Antimicrob. Chemother. 61:59–63 [DOI] [PubMed] [Google Scholar]
  • 23. Réglier-Poupet H, et al. 2008. Performance of ChromID ESBL, a chromogenic medium for detection of Enterobacteriaceae producing extended-spectrum β-lactamases. J. Med. Microbiol. 573:310–315 [DOI] [PubMed] [Google Scholar]
  • 24. Samra Z, et al. 2008. Evaluation of CHROMagar KPC for rapid detection of carbapenem-resistant Enterobacteriaceae. J. Clin. Microbiol. 46:3110–3111 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES