Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Jul;5(7):2679–2693. doi: 10.1093/nar/5.7.2679

Highly efficient copying of single-stranded DNA by eukaryotic cell chromatin.

A Kaftory, M Fry
PMCID: PMC342195  PMID: 673865

Abstract

Chromatin prepared from S phase hepatoma tissue culture (HTC) cell incorporates in vitro about 11-14 pmoles [3H]dTMP into DNA in 30 min. Single-stranded DNA added to this chromatin stimulates DNA synthesis more than 40-fold whereas activated DNA enhances it about 60-fold. By contrast, stimulation of DNA synthesis by activated DNA in a crude nuclear extract exceeds the stimulation exerted by denatured DNA by a factor of 7. Stimulation of DNA synthesis by denatured DNA is not due to stabilization of either the chromatin or the product of the endogenous reaction. On the other hand, we find that poly(dC) and poly (dT) enhance DNA synthesis by serving as templates which are copied by chromatin in a true complementary fashion. It seems therefore, that eukaryotic cell chromatin is able to copy single-stranded DNA at a high efficiency. Chromatin of G1 arrested cell copies exogenous templates at a considerably reduced rate. The enzyme responsible for the copying of denatured DNA is tentatively identified as DNA polymerase alpha on the basis of its sensitivity to sulfhydril group blocking, its requirements for ions and failure to copy the ribo strand of oligo(dT) poly(A).

Full text

PDF
2679

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts B., Sternglanz R. Recent excitement in the DNA replication problem. Nature. 1977 Oct 20;269(5630):655–661. doi: 10.1038/269655a0. [DOI] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger N. A., Johnson E. S. DNA synthesis in permeabilized mouse L cells. Biochim Biophys Acta. 1976 Feb 18;425(1):1–17. doi: 10.1016/0005-2787(76)90211-2. [DOI] [PubMed] [Google Scholar]
  4. Brown R. L., Stubblefield E. DNA synthesis in isolated nuclei. An analysis of the system. Exp Cell Res. 1975 Jun;93(1):89–94. doi: 10.1016/0014-4827(75)90426-7. [DOI] [PubMed] [Google Scholar]
  5. Chan J. Y., Rodriguez L. W., Becker F. F. Endogenous DNA polymerase activity in fractionated rat lever chromatin. Nucleic Acids Res. 1977 Aug;4(8):2683–2695. doi: 10.1093/nar/4.8.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chargaff E. Initiation of enzymic synthesis of deoxyribonucleic acid by ribonucleic acid primers. Prog Nucleic Acid Res Mol Biol. 1976;16:1–24. doi: 10.1016/s0079-6603(08)60754-0. [DOI] [PubMed] [Google Scholar]
  7. Choe B. K., Rose N. R. Synthesis of DNA-binding protein in WI-38 cells stimulated to synthesize DNA by medium replacement. Exp Cell Res. 1974 Feb;83(2):261–270. doi: 10.1016/0014-4827(74)90338-3. [DOI] [PubMed] [Google Scholar]
  8. Choe B. K., Rose N. R. Synthesis of DNA-binding proteins during the cell cycle of WI-38 cells. Exp Cell Res. 1974 Feb;83(2):271–280. doi: 10.1016/0014-4827(74)90339-5. [DOI] [PubMed] [Google Scholar]
  9. Fry M., Weisman-Shomer P. Altered nuclear deoxyribonucleic acid alpha-polymerases in senescent cultured chick embryo fibroblasts. Biochemistry. 1976 Sep 21;15(19):4319–4329. doi: 10.1021/bi00664a028. [DOI] [PubMed] [Google Scholar]
  10. Fry M., Weissbach A. A new deoxyribonucleic acid dependent deoxyribonucleic acid polymerase from HeLa cell mitochondria. Biochemistry. 1973 Sep 11;12(19):3602–3608. doi: 10.1021/bi00743a005. [DOI] [PubMed] [Google Scholar]
  11. Hershey H. V., Stieber J. F., Mueller G. C. Dna synthesis in isolated HeLa nuclei. A system for continuation of replication in vivo. Eur J Biochem. 1973 Apr;34(2):383–394. doi: 10.1111/j.1432-1033.1973.tb02770.x. [DOI] [PubMed] [Google Scholar]
  12. Hershko A., Tomkins G. M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J Biol Chem. 1971 Feb 10;246(3):710–714. [PubMed] [Google Scholar]
  13. Holmes A. M., Johnston I. R. DNA polymerases of eukaryotes. FEBS Lett. 1975 Dec 15;60(2):233–243. doi: 10.1016/0014-5793(75)80721-6. [DOI] [PubMed] [Google Scholar]
  14. Knopf K. W., Weissbach A. Study of DNA synthesis in chromatin isolated from HeLa cells. Biochemistry. 1977 Jul 12;16(14):3190–3194. doi: 10.1021/bi00633a023. [DOI] [PubMed] [Google Scholar]
  15. Krokan H., Bjorklid E., Prydz H. DNA synthesis in isolated HeLa cell nuclei. Optimalization of the system and characterization of the product. Biochemistry. 1975 Sep 23;14(19):4227–4232. doi: 10.1021/bi00690a012. [DOI] [PubMed] [Google Scholar]
  16. Krokan H., Wist E., Prydz H. Effect of cytosol on DNA synthesis in isolated HeLa cell nuclei. Biochem Biophys Res Commun. 1977 Mar 21;75(2):414–419. doi: 10.1016/0006-291x(77)91058-0. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Novak B., Baril E. F. HeLa DNA polymerase alpha activity in vitro: specific stimulation by a non-enzymic protein factor. Nucleic Acids Res. 1978 Jan;5(1):221–239. doi: 10.1093/nar/5.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Otto B., Baynes M., Knippers R. A single-strand-specific DNA-binding protein from mouse cells that stimulates DNA polymerase. Eur J Biochem. 1977 Feb 15;73(1):17–24. doi: 10.1111/j.1432-1033.1977.tb11287.x. [DOI] [PubMed] [Google Scholar]
  20. Salas J., Green H. Proteins binding to DNA and their relation to growth in cultured mammalian cells. Nat New Biol. 1971 Feb 10;229(6):165–169. doi: 10.1038/newbio229165a0. [DOI] [PubMed] [Google Scholar]
  21. Tseng B. Y., Goulian M. DNA synthesis in human lymphocyts: intermediates in DNA synthesis, in vitro and in vivo. J Mol Biol. 1975 Dec 5;99(2):317–337. doi: 10.1016/s0022-2836(75)80149-5. [DOI] [PubMed] [Google Scholar]
  22. Tseng B. Y., Goulian M. Evidence for covalent association of RNA with nascent DNA in human lymphocytes. J Mol Biol. 1975 Dec 5;99(2):339–346. doi: 10.1016/s0022-2836(75)80150-1. [DOI] [PubMed] [Google Scholar]
  23. Tseng B. Y., Goulian M. Initiator RNA of discontinuous DNA synthesis in human lymphocytes. Cell. 1977 Oct;12(2):483–489. doi: 10.1016/0092-8674(77)90124-6. [DOI] [PubMed] [Google Scholar]
  24. Waqar M. A., Huberman J. A. Covalent linkage between RNA and nascent DNA in the slime mold, Physarum polycephalum. Biochim Biophys Acta. 1975 Apr 2;383(4):410–420. doi: 10.1016/0005-2787(75)90310-x. [DOI] [PubMed] [Google Scholar]
  25. Weissbach A. Eukaryotic DNA polymerases. Annu Rev Biochem. 1977;46:25–47. doi: 10.1146/annurev.bi.46.070177.000325. [DOI] [PubMed] [Google Scholar]
  26. Weissbach A. Vertebrate DNA polymerases. Cell. 1975 Jun;5(2):101–108. doi: 10.1016/0092-8674(75)90017-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES