Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Aug;5(8):2729–2741. doi: 10.1093/nar/5.8.2729

'A' forms of RNAs in single strands, duplexes and RNA-DNA hybrids.

S Broyde, B Hingerty
PMCID: PMC342203  PMID: 693318

Abstract

Helical parameters have been calculated for the 'A' form minimum energy conformations of ApA, CpC, GpG, UpU, GpC and UpA. The helix geometries are base sequence dependent. The single strands are narrower and more tightly wound than that duplex RNA-11 form. 9-12 kcal./mole are needed to convert these single strands to the RNA-11 conformation. However, in some sequences other 'A' type conformers capable of complementary base pairing may be formed at lower energetic cost. There is substantially more base stacking in the calculated single strands than in the RNA-11 conformation. Calculated intrastrand base stacking energies reflect these differences, and also are sequence dependent. The 'A' form RNA subunits differ from the analogous DNAs in possessing a larger rise per residue, needed to accomodate the 2'-OH. RNA-DNA hybrids are consequently more likely to be in the 'A-RNA than in the 'A'-DNA conformation, although the base sequence determines the extent of the preference.

Full text

PDF
2729

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. J Am Chem Soc. 1973 Apr 4;95(7):2333–2344. doi: 10.1021/ja00788a038. [DOI] [PubMed] [Google Scholar]
  2. Appleby D. W., Kallenbach N. R. Theory of oligonucleotide stabilization. I. The effect of single-strand stacking. Biopolymers. 1973;12(9):2093–2120. doi: 10.1002/bip.1973.360120915. [DOI] [PubMed] [Google Scholar]
  3. Arnott S., Chandrasekaran R., Leslie A. G. Structure of the single-stranded polyribonucleotide polycytidylic acid. J Mol Biol. 1976 Sep 25;106(3):735–748. doi: 10.1016/0022-2836(76)90262-x. [DOI] [PubMed] [Google Scholar]
  4. Breslauer K. J., Sturtevant J. M. A calorimetric investigation of single stranded base stacking in the ribo-oligonucleotide A7. Biophys Chem. 1977 Nov;7(3):205–209. doi: 10.1016/0301-4622(77)87023-3. [DOI] [PubMed] [Google Scholar]
  5. Broyde S. B., Stellman S. D., Hingerty B., Langridge R. Conformational stability in dinucleoside phosphate crystals. Semiempirical potential energy calculations for uridylyl-3'-5'-adenosine monophosphate (UpA) and guanylyl-3',5'-cytidine monophosphate (GpC). Biopolymers. 1974 Jun;13(6):1243–1259. doi: 10.1002/bip.1974.360130615. [DOI] [PubMed] [Google Scholar]
  6. Broyde S. B., Wartell R. M., Stellman S. D., Hingerty B., Langridge R. Classical potential energy calculations for ApA, CpC, GpG, and UpU. The influence of the bases on RNA subunit conformations. Biopolymers. 1975 Aug;14(8):1597–1613. doi: 10.1002/bip.1975.360140805. [DOI] [PubMed] [Google Scholar]
  7. Ezra F. S., Lee C. H., Kondo N. S., Danyluk S. S., Sarma R. H. Conformational properties of purine-pyrimidine and pyrimidine-purine dinucleoside monophosphates. Biochemistry. 1977 May 3;16(9):1977–1987. doi: 10.1021/bi00628a035. [DOI] [PubMed] [Google Scholar]
  8. Govil G., Fisk C., Howard F. B., Miles H. T. Structure of poly 8-bromoadenylic acid; conformational studies by CPF energy calculations. Nucleic Acids Res. 1977 Aug;4(8):2573–2592. doi: 10.1093/nar/4.8.2573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee C. H., Ezra F. S., Kondo N. S., Sarma R. H., Danyluk S. S. Conformational properties of dinucleoside monophosphates in solution: dipurines and dipyrimidines. Biochemistry. 1976 Aug 10;15(16):3627–3639. doi: 10.1021/bi00661a034. [DOI] [PubMed] [Google Scholar]
  10. O'Brien E. J., MacEwan A. W. Molecular and crystal structure of the polynucleotide complex: polyinosinic acid plus polydeoxycytidylic acid. J Mol Biol. 1970 Mar 14;48(2):243–261. doi: 10.1016/0022-2836(70)90159-2. [DOI] [PubMed] [Google Scholar]
  11. Olson W. K. The spatial configuration of ordered polynucleotide chains. I. Helix formation and base stacking. Biopolymers. 1976 May;15(5):859–878. doi: 10.1002/bip.1976.360150505. [DOI] [PubMed] [Google Scholar]
  12. Rosenberg J. M., Seeman N. C., Day R. O., Rich A. RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3',5'-cytidine nonahydrate. J Mol Biol. 1976 Jun 14;104(1):145–167. doi: 10.1016/0022-2836(76)90006-1. [DOI] [PubMed] [Google Scholar]
  13. Stellman S. D., Hingerty B., Broyde S. B., Subramanian E., Sato T., Langridge R. Structure of guanosine-3',5'-cytidine monophosphate. I. Semi-empirical potential energy calculations and model-building. Biopolymers. 1973 Dec;12(12):2731–2750. doi: 10.1002/bip.1973.360121208. [DOI] [PubMed] [Google Scholar]
  14. Zimmerman S. B., Davies D. R., Navia M. A. An ordered single-stranded structure for polyadenylic acid in denaturing solvents. An X-ray fiber diffraction and model building study. J Mol Biol. 1977 Oct 25;116(2):317–330. doi: 10.1016/0022-2836(77)90219-4. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES