Abstract
The possible role of free radicals in the mechanism of neocarzinostatin (NCS) action was studied. While mercaptene markedly stimulate the ability of NCS to degrade DNA, they also rapidly inactivate the antibiotic in a preincubation and at higher concentration inhibit the degradation reaction. The radiation protector S,2-aminoethylisothiuronium bromide-HBr is the most potent compound tested. Scavengers of diffusible OH radicals, O2- or H2O2 do not result in significant inhibition of the oxygen-dependent cleavage of DNA by NCS; in fact, alcohols and other organic solvents stimulate the reaction several-fold. By contrast, the potent peroxyl free radical scavenger, alpha-tocopherol, blocks the reaction 50% at 50 micron.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beerman T. A., Goldberg I. H. DNA strand scission by the antitumor protein neocarzinostatin. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1254–1261. doi: 10.1016/0006-291x(74)90449-5. [DOI] [PubMed] [Google Scholar]
- Beerman T. A., Goldberg I. H. The relationship between DNA strand-scission and DNA synthesis inhibition in HeLa cells treated with neocarzinostatin. Biochim Biophys Acta. 1977 Mar 18;475(2):281–293. doi: 10.1016/0005-2787(77)90019-3. [DOI] [PubMed] [Google Scholar]
- Beerman T. A., Poon R., Goldberg I. H. Single-strand nicking of DNA in vitro by neocarzinostatin and its possible relationship to the mechanism of drug action. Biochim Biophys Acta. 1977 Mar 18;475(2):294–306. doi: 10.1016/0005-2787(77)90020-x. [DOI] [PubMed] [Google Scholar]
- Bode V. C. Single-strand scissions induced in circular and linear lambda DNA by the presence of dithiothreitol and other reducing agents. J Mol Biol. 1967 May 28;26(1):125–129. doi: 10.1016/0022-2836(67)90266-5. [DOI] [PubMed] [Google Scholar]
- ISHIDA N., MIYAZAKI K., KUMAGAI K., RIKIMARU M. NEOCARZINOSTATIN, AN ANTITUMOR ANTIBIOTIC OF HIGH MOLECULAR WEIGHT. ISOLATION, PHYSIOCHEMICAL PROPERTIES AND BIOLOGICAL ACTIVITIES. J Antibiot (Tokyo) 1965 Mar;18:68–76. [PubMed] [Google Scholar]
- Ishida R., Takahashi T. In vitro release of thymine from DNA by neocarzinostatin. Biochem Biophys Res Commun. 1976 Jan 12;68(1):256–261. doi: 10.1016/0006-291x(76)90037-1. [DOI] [PubMed] [Google Scholar]
- Kappen L. S., Goldberg I. H. Effect of neocarzinostatin-induced strand scission on the template activity of DNA for DNA polymerase I. Biochemistry. 1977 Feb 8;16(3):479–485. doi: 10.1021/bi00622a022. [DOI] [PubMed] [Google Scholar]
- Kappen L. S., Goldberg I. H. Gaps in DNA induced by neocarzinostatin bear 3'- and 5'-phosphoryl termini. Biochemistry. 1978 Feb 21;17(4):729–734. doi: 10.1021/bi00597a027. [DOI] [PubMed] [Google Scholar]
- Lown J. W., Sim S. K. The mechanism of the bleomycin-induced cleavage of DNA. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1150–1157. doi: 10.1016/s0006-291x(77)80099-5. [DOI] [PubMed] [Google Scholar]
- Meienhofer J., Maeda H., Glaser C. B., Czombos J., Kuromizu K. Primary structure of neocarzinostatin, an antitumor protein. Science. 1972 Nov 24;178(4063):875–876. doi: 10.1126/science.178.4063.875. [DOI] [PubMed] [Google Scholar]
- Ohtsuki K., Ishida N. Mechanism of DNA degradation induced by neocarzinostatin in Bacillus subtilis. J Antibiot (Tokyo) 1975 Mar;28(3):229–236. doi: 10.7164/antibiotics.28.229. [DOI] [PubMed] [Google Scholar]
- Ohtsuki K., Ishida N. Neocarzinostatin-induced breakdown of deoxyribonucleic acid in HeLa-S3 cells. J Antibiot (Tokyo) 1975 Feb;28(2):143–148. doi: 10.7164/antibiotics.28.143. [DOI] [PubMed] [Google Scholar]
- Ono Y., Watanabe Y., Ishida N. Mode of action of neocarzinostatin: inhibition of DNA synthesis and degradation of DNA in Sarcina lutea. Biochim Biophys Acta. 1966 Apr 18;119(1):46–58. doi: 10.1016/0005-2787(66)90036-0. [DOI] [PubMed] [Google Scholar]
- Poon R., Beerman T. A., Goldberg I. H. Characterization of DNA strand breakage in vitro by the antitumor protein neocarzinostatin. Biochemistry. 1977 Feb 8;16(3):486–493. doi: 10.1021/bi00622a023. [DOI] [PubMed] [Google Scholar]
- Rao A. P., Rao P. N. The cause of G2-arrest in Chinese hamster ovary cells treated with anticancer drugs. J Natl Cancer Inst. 1976 Nov;57(5):1139–1143. doi: 10.1093/jnci/57.5.1139. [DOI] [PubMed] [Google Scholar]
- Rosenkranz H. S., Rosenkranz S. Degradation of DNA by cysteine. Arch Biochem Biophys. 1971 Oct;146(2):483–487. doi: 10.1016/0003-9861(71)90152-4. [DOI] [PubMed] [Google Scholar]
- Sawada H., Tatsumi K., Sasada M., Shirakawa S., Nakamura T. Effect of neocarzinostatin on DNA synthesis in L1210 cells. Cancer Res. 1974 Dec;34(12):3341–3346. [PubMed] [Google Scholar]
- Sim S. K., Lown J. W. The mechanism of the neocarzinostatin-induced cleavage of DNA. Biochem Biophys Res Commun. 1978 Mar 15;81(1):99–105. doi: 10.1016/0006-291x(78)91635-2. [DOI] [PubMed] [Google Scholar]
- Tatsumi K., Nakamura T., Wakisaka G. Damage of mammalian cell DNA in vivo and in vitro induced by neocarzinostatin. Gan. 1974 Oct;65(5):459–461. [PubMed] [Google Scholar]
- Tatsumi K., Nishioka H. Effect of DNA Repair systems on antibacterial and mutagenic activity of an antitumor protein, neocarzinostatin. Mutat Res. 1977 Apr;48(2):195–203. doi: 10.1016/0027-5107(77)90161-0. [DOI] [PubMed] [Google Scholar]
- Tatsumi K., Sakane T., Sawada H., Shirakawa S., Nakamura T. Unscheduled DNA synthesis in human lymphocytes treated with neocarzinostatin. Gan. 1975 Aug;66(4):441–444. [PubMed] [Google Scholar]
- Ward J. F., Kuo I. Strand breaks, base release, and postirradiation changes in DNA gamma-irradiated in dilute O2-saturated aqueous solution. Radiat Res. 1976 Jun;66(3):485–498. [PubMed] [Google Scholar]
