Abstract
Bulk tRNA from yeast and Rat liver can be methylated in vitro with -adenosylmethionine and B, subtilis extracts. The sole product formed is 1-methyladenosine (m1A). This tRNA (adenine-1) methyltransferase converts quantitatively the 3'-terminal adenosine-residue in the dihydrouridine-loop of tRNAThr and tRNATyr from yeast into m1A. Out of 16 eucaryotic tRNAs with known sequences 6 accepted methyl groups, all at a molar ratio of 1. These tRNAs have in common an unpaired adenosine-residue at the specific site in the sequence Py-A-A+-G-G-C-m2G. Out of 12 tRNAs from E. coli 6 served as specific substrates. These E. coli tRNAs also have an unpaired adenosine-residue at the 3'-end of the D-loop. Besides restrictions in primary structure intact secondary and tertiary structure is important for recognition of the specific tRNAs by the enzyme.
Full text
PDF![3033](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/a1d6774ebcc2/nar00469-0336.png)
![3034](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/0e820bb91617/nar00469-0337.png)
![3035](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/c634884511e6/nar00469-0338.png)
![3036](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/621624961378/nar00469-0339.png)
![3037](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/57902c57aded/nar00469-0340.png)
![3038](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/3d39f9a31715/nar00469-0341.png)
![3039](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/02778a776b63/nar00469-0342.png)
![3040](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/14ddbbc8cd6f/nar00469-0343.png)
![3041](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/a57c148cf9fd/nar00469-0344.png)
![3042](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e2/342224/290f0947a1eb/nar00469-0345.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold H., Kersten H. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli and Bacillus subtilis. FEBS Lett. 1973 Oct 1;36(1):34–38. doi: 10.1016/0014-5793(73)80331-x. [DOI] [PubMed] [Google Scholar]
- Dirheimer G., Ebel J. P. Fractionnement des tRNA de levure de bière par distribution en contre-courant. Bull Soc Chim Biol (Paris) 1967;49(12):1679–1687. [PubMed] [Google Scholar]
- Glick J. M., Averyhart V. M., Leboy P. S. Purification and characterization of two tRNA-(guanine)-methyltransferases from rat liver. Biochim Biophys Acta. 1978 Mar 29;518(1):158–171. doi: 10.1016/0005-2787(78)90125-9. [DOI] [PubMed] [Google Scholar]
- Kerr S. J., Borek E. The tRNA methyltransferases. Adv Enzymol Relat Areas Mol Biol. 1972;36:1–27. doi: 10.1002/9780470122815.ch1. [DOI] [PubMed] [Google Scholar]
- Kraus J. Recognition of individual Escherichia coli transfer ribonucleic acids by 1-adenine-specific methyltransferase from rat liver. Biochem J. 1978 Jan 1;169(1):247–249. doi: 10.1042/bj1690247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraus J., Staehelin M. N2-guanine specific transfer RNA methyltransferase I from rat liver and leukemic rat spleen. Nucleic Acids Res. 1974 Nov;1(11):1455–1478. doi: 10.1093/nar/1.11.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuchino Y., Nishimura S. Methylation of Escherichia coli transfer ribonucleic acids by adenylate residue-specific transfer ribonucleic acid methylase from rat liver. Biochemistry. 1974 Aug 27;13(18):3683–3688. doi: 10.1021/bi00715a010. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Adams A., Fresco J. R. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):941–948. doi: 10.1073/pnas.55.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nau F. The methylation of tRNA. Biochimie. 1976;58(6):629–645. doi: 10.1016/s0300-9084(76)80387-2. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Sites of methylation of purified transfer ribonucleic acid preparations by enzymes from normal tissues and from tumours induced by dimethylnitrosamine and 1,2-dimethylhydrazine. Biochem J. 1974 Feb;137(2):239–248. doi: 10.1042/bj1370239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pope W. T., Brown A., Reeves R. H. The identification of the tRNA substrates for the supK tRNA methylase. Nucleic Acids Res. 1978 Mar;5(3):1041–1057. doi: 10.1093/nar/5.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raettig R., Kersten H., Weissenbach J., Dirheimer G. Methylation of an adenosine in the D-loop of specific transfer RNAs from yeast by a procaryotic tRNA (adenine-1) methyltransferase. Nucleic Acids Res. 1977 Jun;4(6):1769–1782. doi: 10.1093/nar/4.6.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raettig R., Schmidt W., Mahal G., Kersten H., Arnold H. H. Purification and characterization of tRNAMet-f, tRNAPhe and tRNATyr2 from Baccillus subtilis. Biochim Biophys Acta. 1976 Jun 18;435(2):109–118. doi: 10.1016/0005-2787(76)90241-0. [DOI] [PubMed] [Google Scholar]
- Rordorf B. F., Kearns D. R. Nuclear magnetic resonance investigation of the base-pairing structure of Escherichia coli tRNATyr monomer and dimer conformations. Biochemistry. 1976 Jul 27;15(15):3320–3330. doi: 10.1021/bi00660a024. [DOI] [PubMed] [Google Scholar]
- Simoncsits A., Brownlee G. G., Brown R. S., Rubin J. R., Guilley H. New rapid gel sequencing method for RNA. Nature. 1977 Oct 27;269(5631):833–836. doi: 10.1038/269833a0. [DOI] [PubMed] [Google Scholar]
- Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: chromatographic differences between transfer ribonucleic acids from spores and cells in exponential growth. J Bacteriol. 1973 Feb;113(2):825–833. doi: 10.1128/jb.113.2.825-833.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang S. K., Söll D. G., Crothers D. M. Properties of a dimer of tRNA I Tyr 1 (Escherichia coli). Biochemistry. 1972 Jun 6;11(12):2311–2320. doi: 10.1021/bi00762a016. [DOI] [PubMed] [Google Scholar]