Abstract
The distribution of DNA repair synthesis in the chromatin of confluent human diploid fibroblasts damaged with N-acetoxy-2-acetylaminofluorene has been studied. Kinetic analysis of staphylococcal nuclease digestion data revealed that initially most of the repair synthesis occurred in nuclease sensitive regions of chromatin. Continuous labeling experiments and pulse chase experiments indicated that with time much of the 3H dThd initially incorporated into nuclease sensitive regions during repair appeared in nuclease resistant regions. Agarose gel electrophoresis was used to demonstrate that these resistant regions were core DNA. In agreement with previous findings [Smerdon, M.J. and Lieberman, M.W., (1978), Proc. Nat. Acad. Sci. USA, in press], studies of the time course of this rearrangement and of repair synthesis revealed similar time dependences and suggested a relationship between rates of repair synthesis and chromatin rearrangement.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed F. E., Setlow R. B. Different rate-limiting steps in excision repair of ultraviolet- and N-acetoxy-2-acetylaminofluorene-damaged DNA in normal human fibroblasts. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1548–1552. doi: 10.1073/pnas.74.4.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amacher D. E., Elliott J. A., Lieberman M. W. Differences in removal of acetylaminofluorene and pyrimidine dimers from the DNA of cultured mammalian cells. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1553–1557. doi: 10.1073/pnas.74.4.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amacher D. E., Lieberman M. W. Removal of acetylaminofluorene from the DNA of control and repair-deficient human fibroblasts. Biochem Biophys Res Commun. 1977 Jan 10;74(1):285–290. doi: 10.1016/0006-291x(77)91406-1. [DOI] [PubMed] [Google Scholar]
- Bodell W. J. Nonuniform distribution of DNA repair in chromatin after treatment with methyl methanesulfonate. Nucleic Acids Res. 1977 Aug;4(8):2619–2628. doi: 10.1093/nar/4.8.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleaver J. E. Nucleosome structure controls rates of excision repair in DNA of human cells. Nature. 1977 Dec 1;270(5636):451–453. doi: 10.1038/270451a0. [DOI] [PubMed] [Google Scholar]
- Cooper H. K., Margison G. P., O'Connor P. J., Itzhaki R. F. Heterogeneous distribution of DNA alkylation products in rat liver chromatin after in vivo administration of N,N-di[14C]methylnitrosamine. Chem Biol Interact. 1975 Dec;11(6):483–492. doi: 10.1016/0009-2797(75)90024-1. [DOI] [PubMed] [Google Scholar]
- Felsenfeld G. Chromatin. Nature. 1978 Jan 12;271(5641):115–122. doi: 10.1038/271115a0. [DOI] [PubMed] [Google Scholar]
- Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
- Kovacic R. T., van Holde K. E. Sedimentation of homogeneous double-strand DNA molecules. Biochemistry. 1977 Apr 5;16(7):1490–1498. doi: 10.1021/bi00626a038. [DOI] [PubMed] [Google Scholar]
- Lieberman M. W., Poirier M. C. Deoxyribonucleoside incorporation during DNA repair of carcinogen-induced damage in human diploid fibroblasts. Cancer Res. 1973 Sep;33(9):2097–2103. [PubMed] [Google Scholar]
- Lieberman M. W., Poirier M. C. Distribution of deoxyribonucleic acid repair synthesis among repetitive and unique sequences in the human diploid genome. Biochemistry. 1974 Jul 16;13(15):3018–3023. doi: 10.1021/bi00712a003. [DOI] [PubMed] [Google Scholar]
- Metzger G., Wilhelm F. X., Wilhelm M. L. Distribution along DNA of the bound carcinogen N-acetoxy-N-2-acetylaminofluorene in chromatin modified in vitro. Chem Biol Interact. 1976 Nov;15(3):257–265. doi: 10.1016/0009-2797(76)90151-4. [DOI] [PubMed] [Google Scholar]
- Metzger G., Wilhelm F. X., Wilhelm M. L. Non-random binding of a chemical carcinogen to the DNA in chromatin. Biochem Biophys Res Commun. 1977 Apr 11;75(3):703–710. doi: 10.1016/0006-291x(77)91529-7. [DOI] [PubMed] [Google Scholar]
- Pero R. W., Bryngelsson C., Mitelman F., Thulin T., Nordén A. High blood pressure related to carcinogen-induced unscheduled DNA synthesis, DNA carcinogen binding, and chromosomal aberrations in human lymphocytes. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2496–2500. doi: 10.1073/pnas.73.7.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramanathan R., Rajalakshmi S., Sarma D. S., Farber E. Nonrandom nature of in vivo methylation of dimethylnitrosamine and the subsequent removal of methylated products from rat liver chromatin DNA. Cancer Res. 1976 Jun;36(6):2073–2079. [PubMed] [Google Scholar]
- Ramanathan R., Rajalakshmi S., Sarma D. S. Non-random nature of in vivo interaction of 3H-N-hydroxy-2-acetylaminofluorene and its subsequent removal from rat liver chromatin-DNA. Chem Biol Interact. 1976 Aug;14(3-4):375–377. doi: 10.1016/0009-2797(76)90116-2. [DOI] [PubMed] [Google Scholar]
- Smerdon M. J., Tlsty T. D., Lieberman M. W. Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin. Biochemistry. 1978 Jun 13;17(12):2377–2386. doi: 10.1021/bi00605a020. [DOI] [PubMed] [Google Scholar]
- Stein G. S., Park W. D., Stein J. L., Lieberman M. W. Synthesis of nuclear proteins during DNA repair synthesis in human diploid fibroblasts damaged with ultraviolet radiation of N-acetoxy-2-acetylaminofluroene. Proc Natl Acad Sci U S A. 1976 May;73(5):1466–1470. doi: 10.1073/pnas.73.5.1466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trosko J. E., Yager J. D. A sensitive method to measure physical and chemical carcinogen-induced "unscheduled DNA synthesis" in rapidly dividing eukaryotic cells. Exp Cell Res. 1974 Sep;88(1):47–55. doi: 10.1016/0014-4827(74)90616-8. [DOI] [PubMed] [Google Scholar]