Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Sep;5(9):3357–3364. doi: 10.1093/nar/5.9.3357

Distribution of 7-methylguanine and of replication sites in the different kinetic classes of DNA from rats treated with dimethylnitrosamine.

A I Galbraith, M R Chapleo, R F Itzhaki
PMCID: PMC342255  PMID: 704360

Abstract

The distribution of 7-methylguanine in the families of repetitive and unique sequences of rat liver chromatin DNA has been studied using the technique of DNA-DNA reassociation. Rats were injected with di[14C]methylnitrosamine and chromatin DNA was prepared 3 h later. The distribution of 7-methylguanine was found to be random between these classes of DNA. We have also studied chromatin DNA from rats treated with unlabelled DMN plus [3H]thymidine in this way, in order to find if DMN affects DNA synthesis within any one kinetic class. Our results suggest that there is no difference in the extent of synthesis between these classes.

Full text

PDF
3357

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodell W. J., Banerjee M. R. Reduced DNA repair in mouse satellite DNA after treatment with methylmethanesulfonate, and N-methyl-N-nitrosourea. Nucleic Acids Res. 1976 Jul;3(7):1689–1701. doi: 10.1093/nar/3.7.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bodell W. J. Nonuniform distribution of DNA repair in chromatin after treatment with methyl methanesulfonate. Nucleic Acids Res. 1977 Aug;4(8):2619–2628. doi: 10.1093/nar/4.8.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  4. Cooper H. K., Margison G. P., O'Connor P. J., Itzhaki R. F. Heterogeneous distribution of DNA alkylation products in rat liver chromatin after in vivo administration of N,N-di[14C]methylnitrosamine. Chem Biol Interact. 1975 Dec;11(6):483–492. doi: 10.1016/0009-2797(75)90024-1. [DOI] [PubMed] [Google Scholar]
  5. Craddock V. M., Henderson A. R., Ansley C. M. Repair replication of DNA in the intact animal following treatment with dimethylnitrosamine and with methyl methanesulphonate, studied by fractionation of nuclei in a zonal centrifuge. Biochim Biophys Acta. 1976 Sep 20;447(1):53–64. doi: 10.1016/0005-2787(76)90095-2. [DOI] [PubMed] [Google Scholar]
  6. FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
  7. ITZHAKI R. F., GILL D. M. A MICRO-BIURET METHOD FOR ESTIMATING PROTEINS. Anal Biochem. 1964 Dec;9:401–410. doi: 10.1016/0003-2697(64)90200-3. [DOI] [PubMed] [Google Scholar]
  8. Itzhaki R. F. Structure and properties of rat thymus deoxyribonucleoprotein. I. Electric birefringence and centrifugation studies. Proc R Soc Lond B Biol Sci. 1966 Feb 15;164(994):75–95. doi: 10.1098/rspb.1966.0014. [DOI] [PubMed] [Google Scholar]
  9. Jahn C. L., Litman G. W. Distribution of covalently bound benzo(a)pyrene in chromatin. Biochem Biophys Res Commun. 1976 May 23;76(2):534–540. doi: 10.1016/0006-291x(77)90757-4. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lieberman M. W., Poirier M. C. Distribution of deoxyribonucleic acid repair synthesis among repetitive and unique sequences in the human diploid genome. Biochemistry. 1974 Jul 16;13(15):3018–3023. doi: 10.1021/bi00712a003. [DOI] [PubMed] [Google Scholar]
  12. Margison G. P., Capps M. J., O'Connor P. J., Craig A. W. Loss of 7-methylguanine from rat liver DNA after methylation in vivo with methylmethanesulphonate or dimethylnitrosamine. Chem Biol Interact. 1973 Feb;6(2):119–124. doi: 10.1016/0009-2797(73)90078-1. [DOI] [PubMed] [Google Scholar]
  13. Metzger G., Wilhelm F. X., Wilhelm M. L. Distribution along DNA of the bound carcinogen N-acetoxy-N-2-acetylaminofluorene in chromatin modified in vitro. Chem Biol Interact. 1976 Nov;15(3):257–265. doi: 10.1016/0009-2797(76)90151-4. [DOI] [PubMed] [Google Scholar]
  14. Metzger G., Wilhelm F. X., Wilhelm M. L. Non-random binding of a chemical carcinogen to the DNA in chromatin. Biochem Biophys Res Commun. 1977 Apr 11;75(3):703–710. doi: 10.1016/0006-291x(77)91529-7. [DOI] [PubMed] [Google Scholar]
  15. Pegg A. E. Formation and metabolism of alkylated nucleosides: possible role in carcinogenesis by nitroso compounds and alkylating agents. Adv Cancer Res. 1977;25:195–269. doi: 10.1016/s0065-230x(08)60635-1. [DOI] [PubMed] [Google Scholar]
  16. Ramanathan R., Rajalakshmi S., Sarma D. S., Farber E. Nonrandom nature of in vivo methylation of dimethylnitrosamine and the subsequent removal of methylated products from rat liver chromatin DNA. Cancer Res. 1976 Jun;36(6):2073–2079. [PubMed] [Google Scholar]
  17. Ramanathan R., Rajalakshmi S., Sarma D. S. Non-random nature of in vivo interaction of 3H-N-hydroxy-2-acetylaminofluorene and its subsequent removal from rat liver chromatin-DNA. Chem Biol Interact. 1976 Aug;14(3-4):375–377. doi: 10.1016/0009-2797(76)90116-2. [DOI] [PubMed] [Google Scholar]
  18. Widnell C. C., Tata J. R. A procedure for the isolation of enzymically active rat-liver nuclei. Biochem J. 1964 Aug;92(2):313–317. doi: 10.1042/bj0920313. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES