Abstract
Fidelity of preribosomal RNA transcription in vitro was studied after selective deproteinization of nucleoli using either sequential salt extraction or sodium deoxycholate treatment. Homochromatography fingerprinting and identification of marker oligonucleotides from a T1 ribonuclease digest of the transcripts were used to evaluate the RNA products. These studies indicated that: (1) nucleoli retained their endogenous RNA polymerase I activity and the specificity of transcription up to 0.6 M NaCl extraction; (2) exogenous RNA polymerase I transcribed nucleolar chromatin only after 1.0 M NaCl extraction and the transcription pattern, like that of totally deproteinized DNA, was completely random; (3) extraction of nucleoli with deoxycholate resulted in a DNP complex in which the endogenous RNA polymerase I transcribed pre-rRNA specifically; however, it also initiated random transcription, producing a "mixed" fingerprint pattern on the homochromatogram. The random transcription was selectively inhibited either by deoxycholate or rifampicin AF/013. These studies indicate that the selectivity of pre-rRNA transcription is due both to the endogenous RNA polymerase I molecules that were involved in transcription in vivo and are tightly bound to the template and to factors in intact nucleoli which prevent random transcription by the released RNA polymerase I molecules.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballal N. R., Choi Y. C., Mouche R., Busche H. Fidelity of synthesis of preribosomal RNA in isolated nucleoli and nucleolar chromatin. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2446–2450. doi: 10.1073/pnas.74.6.2446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butterworth P. H., Cox R. F., Chesterton C. J. Transcription of mammalian chromatin by mammalian DNA-dependent RNA polymerases. Eur J Biochem. 1971 Nov 11;23(2):229–241. doi: 10.1111/j.1432-1033.1971.tb01613.x. [DOI] [PubMed] [Google Scholar]
- Choi Y. C., Ballal N. R., Busch R. K., Busch H. Homochromatographic and immunological analysis of controls of nucleolar gene function. Cancer Res. 1976 Nov;36(11 Pt 2):4301–4306. [PubMed] [Google Scholar]
- Daskal Y., Ballal N. R., Busch H. Ultrastructural and biochemical studies on the isolation of nucleolar chromatin from Novikoff hepatoma cell nucleoli. Exp Cell Res. 1978 Jan;111(1):153–165. doi: 10.1016/0014-4827(78)90245-8. [DOI] [PubMed] [Google Scholar]
- Holland M. J., Hager G. L., Rutter W. J. Transcription of yeast DNA by homologous RNA polymerases I and II: selective transcription of ribosomal genes by RNA polymerase I. Biochemistry. 1977 Jan 11;16(1):16–24. doi: 10.1021/bi00620a003. [DOI] [PubMed] [Google Scholar]
- Howk R. S., Williams D. R., Haberman A. B., Parks W. P., Scolnick E. M. A comparison of the transcription of mouse cell chromatin by homologous RNA polymerase I and II. Cell. 1974 Sep;3(1):15–22. doi: 10.1016/0092-8674(74)90032-4. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Honda B. M., Mills A. D., Finch J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 1978 Oct 5;275(5679):416–420. doi: 10.1038/275416a0. [DOI] [PubMed] [Google Scholar]
- Orrick L. R., Olson M. O., Busch H. Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A. 1973 May;70(5):1316–1320. doi: 10.1073/pnas.70.5.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prestayko A. W., Klomp G. R., Schmoll D. J., Busch H. Comparison of proteins of ribosomal subunits and nucleolar preribosomal particles from Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Biochemistry. 1974 Apr 23;13(9):1945–1951. doi: 10.1021/bi00706a026. [DOI] [PubMed] [Google Scholar]
- Reeves R. Nucleosome structure of Xenopus oocyte amplified ribosomal genes. Biochemistry. 1978 Nov 14;17(23):4908–4916. doi: 10.1021/bi00616a008. [DOI] [PubMed] [Google Scholar]
- Rothblum L. I., Mamrack P. M., Kunkle H. M., Olson M. O., Busch H. Fractionation of nucleoli. Enzymatic and two-dimensional polyacrylamide gel electrophoretic analysis. Biochemistry. 1977 Oct 18;16(21):4716–4721. doi: 10.1021/bi00640a028. [DOI] [PubMed] [Google Scholar]
- Samal B., Ballal R., Choi Y. C., Busch H. Effect of Sarkosyl on the fidelity of preribosomal RNA synthesis in isolated nucleoli. Biochem Biophys Res Commun. 1978 Sep 29;84(2):328–334. doi: 10.1016/0006-291x(78)90174-2. [DOI] [PubMed] [Google Scholar]
- Scheer U., Zentgraf H. Nucleosomal and supranucleosomal organization of transcriptionally inactive rDNA circles in Dytiscus oocytes. Chromosoma. 1978 Nov 22;69(2):243–254. doi: 10.1007/BF00329922. [DOI] [PubMed] [Google Scholar]
- Schwartz L. B., Roeder R. G. Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase I from the mouse myeloma, MOPC 315. J Biol Chem. 1974 Sep 25;249(18):5898–5906. [PubMed] [Google Scholar]
- Smart J. E., Bonner J. Selective dissociation of histones from chromatin by sodium deoxycholate. J Mol Biol. 1971 Jun 28;58(3):651–659. doi: 10.1016/0022-2836(71)90030-1. [DOI] [PubMed] [Google Scholar]
- Tekamp P. A., Valenzuela P., Maynard T., Bell G. I., Rutter W. J. Specific gene transcription in yeast nuclei and chromatin by added homologous RNA polymerases I and II. J Biol Chem. 1979 Feb 10;254(3):955–963. [PubMed] [Google Scholar]
- Van Keulen H., Planta R. J., Retèl J. Structure and transcription specificity of yeast RNA polymerase A. Biochim Biophys Acta. 1975 Jun 16;395(2):179–190. doi: 10.1016/0005-2787(75)90157-4. [DOI] [PubMed] [Google Scholar]






