Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Nov 10;7(5):1263–1281. doi: 10.1093/nar/7.5.1263

Structure of plant nuclear and ribosomal DNA containing chromatin.

B Leber, V Hemleben
PMCID: PMC342301  PMID: 514813

Abstract

Digestion of plant chromatin from Brassica pekinensis and Matthiola incana with staphylococcus nuclease leads to a DNA repeat of 175 plus or minus 8 and a core size of 140 base pairs. DNase I digestion results in multiples of 10 bases. Ribosomal RNN genes were studied as a model system for active plant chromatin because of their great redundancy and their high transcriptional activity in growing and differentiating tissues. The actively transcribed genes were identified by nascent RNA of ribosomal origin still attached to its matrix DNA. Hybridization techniques were used to demonstrate that even transcriptionally active gene sequences are present in nuclease generated chromatin subunits. Comparison of the DNase I kinetics of chromatin digestion with the amount of ribosomal RNA genes which is available for hybridization at the given times indicated that ribosomal RNA genes are digested, but not preferentially degraded by DNase I.

Full text

PDF
1263

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allfrey V. G., Johnson E. M., Sun I. Y., Littau V. C., Matthews H. R., Bradbury E. M. Structural organization and control of the ribosomal genes in Physarum. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):505–514. doi: 10.1101/sqb.1978.042.01.053. [DOI] [PubMed] [Google Scholar]
  2. Axel R., Cedar H., Felsenfield G. The structure of the globin genes in chromatin. Biochemistry. 1975 Jun 3;14(11):2489–2495. doi: 10.1021/bi00682a031. [DOI] [PubMed] [Google Scholar]
  3. Cheah K. S., Osborne D. J. Analysis of nucleosomal deoxyribonucleic acid in a higher plant. Biochem J. 1977 Apr 1;163(1):141–144. doi: 10.1042/bj1630141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Foe V. E., Wilkinson L. E., Laird C. D. Comparative organization of active transcription units in Oncopeltus fasciatus. Cell. 1976 Sep;9(1):131–146. doi: 10.1016/0092-8674(76)90059-3. [DOI] [PubMed] [Google Scholar]
  5. Garel A., Axel R. Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3966–3970. doi: 10.1073/pnas.73.11.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grierson D., Hemleben V. Ribonucleic acid from the higher plant Matthiola incana. Molecular weight measurements and DNA-RNA hybridisation studies. Biochim Biophys Acta. 1977 Apr 4;475(3):424–436. doi: 10.1016/0005-2787(77)90058-2. [DOI] [PubMed] [Google Scholar]
  7. Hemleben V., Ermisch N., Kimmich D., Leber B., Peter G. Studies on the fate of homologous DNA applied to seedlings of Matthiola incana. Eur J Biochem. 1975 Aug 15;56(2):403–411. doi: 10.1111/j.1432-1033.1975.tb02246.x. [DOI] [PubMed] [Google Scholar]
  8. Lacy E., Axel R. Analysis of DNA of isolated chromatin subunits. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3978–3982. doi: 10.1073/pnas.72.10.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laird C. D., Wilkinson L. E., Foe V. E., Chooi W. Y. Analysis of chromatin-associated fiber arrays. Chromosoma. 1976 Oct 28;58(2):169–190. doi: 10.1007/BF00701357. [DOI] [PubMed] [Google Scholar]
  10. Maniatis T., Jeffrey A., van deSande H. Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry. 1975 Aug 26;14(17):3787–3794. doi: 10.1021/bi00688a010. [DOI] [PubMed] [Google Scholar]
  11. Mathis D. J., Gorovsky M. A. Structure of rDNA-containing chromatin of Tetrahymena pyriformis analyzed by nuclease digestion. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):773–778. doi: 10.1101/sqb.1978.042.01.077. [DOI] [PubMed] [Google Scholar]
  12. McKnight S. L., Bustin M., Miller O. L., Jr Electron microscopic analysis of chromosome metabolism in the Drosophila melanogaster embryo. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):741–754. doi: 10.1101/sqb.1978.042.01.075. [DOI] [PubMed] [Google Scholar]
  13. Noll H. Characterization of macromolecules by constant velocity sedimentation. Nature. 1967 Jul 22;215(5099):360–363. doi: 10.1038/215360a0. [DOI] [PubMed] [Google Scholar]
  14. Philipps G., Gigot C. DNA associated with nucleosomes in plants. Nucleic Acids Res. 1977 Oct;4(10):3617–3626. doi: 10.1093/nar/4.10.3617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reeves R., Jones A. Genomic transcriptional activity and the structure of chromatin. Nature. 1976 Apr 8;260(5551):495–500. doi: 10.1038/260495a0. [DOI] [PubMed] [Google Scholar]
  16. Reeves R. Ribosomal genes of Xenopus laevis: evidence of nucleosomes in transcriptionally active chromatin. Science. 1976 Oct 29;194(4264):529–532. doi: 10.1126/science.973136. [DOI] [PubMed] [Google Scholar]
  17. Scheer U. Changes of nucleosome frequency in nucleolar and non-nucleolar chromatin as a function of transcription: an electron microscopic study. Cell. 1978 Mar;13(3):535–549. doi: 10.1016/0092-8674(78)90327-6. [DOI] [PubMed] [Google Scholar]
  18. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  19. Spring H., Grierson D., Hemleben V., Stöhr M., Krohne G., Stadler J., Franke W. W. DNA contents and numbers of nucleoli and pre-rRNA-genes in nuclei of gametes and vegetative cells of Acetabularia mediterranea. Exp Cell Res. 1978 Jun;114(1):203–215. doi: 10.1016/0014-4827(78)90054-x. [DOI] [PubMed] [Google Scholar]
  20. Stalder J., Seebeck T., Braun R. Degradation of the ribosomal genes by DNAse I in Physarum polycephalum. Eur J Biochem. 1978 Oct;90(2):391–395. doi: 10.1111/j.1432-1033.1978.tb12616.x. [DOI] [PubMed] [Google Scholar]
  21. Tien Kuo M., Sahasrabuddhe C. G., Saunders G. F. Presence of messenger specifying sequences in the DNA of chromatin subunits. Proc Natl Acad Sci U S A. 1976 May;73(5):1572–1575. doi: 10.1073/pnas.73.5.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976 Sep 3;193(4256):848–856. doi: 10.1126/science.948749. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES