Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Dec 11;7(7):1901–1912. doi: 10.1093/nar/7.7.1901

The relationship between pyrimidine dimers and replicating DNA in UV-irradiated human fibroblasts.

A R Lehmann
PMCID: PMC342355  PMID: 231765

Abstract

The relationship between pyrimidine dimers (measured as endonuclease-sensitive sites) and newly-synthesized DNA has been examined in several different ways, with the following results:- 1. After UV-irradiation of normal human fibroblasts the frequency of pyrimidine dimer sites in sections of DNA which have been synthesized immediately before the UV-irradiation is similar to that in the bulk DNA. 2. The frequency of pyrimidine dimer sites in the parental strands of replicating DNA in UV-irradiated normal human fibroblasts is similar to that in the bulk DNA. 3. In UV-irradiated XP variant cells the size of DNA synthesized in the presence of caffeine immediately after UV irradiation accurately corresponds with the average interdimer distance in the parental DNA. This suggests that in this experimental situation each pyrimidine dimer gives rise to a disocntinuity or a termination site in the daughter strand.

Full text

PDF
1901

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buhl S. N., Stillman R. M., Setlow R. B., Regan J. D. DNA chain elongation and joining in normal human and xeroderma pigmentosum cells after ultraviolet irradiation. Biophys J. 1972 Sep;12(9):1183–1191. doi: 10.1016/S0006-3495(72)86154-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carrier W. L., Setlow R. B. Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: purification and properties. J Bacteriol. 1970 Apr;102(1):178–186. doi: 10.1128/jb.102.1.178-186.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarkson J. M., Hewitt R. R. Significance of dimers to the size of newly synthesized DNA in UV-irradiated Chinese hamster ovary cells. Biophys J. 1976 Oct;16(10):1155–1164. doi: 10.1016/S0006-3495(76)85764-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleaver J. E. DNA repair and its coupling to DNA replication in eukaryotic cells. Biochim Biophys Acta. 1978 Dec 11;516(4):489–516. doi: 10.1016/0304-419x(78)90020-3. [DOI] [PubMed] [Google Scholar]
  5. Cordeiro-Stone M., Schumacher R. I., Meneghini R. Structure of the replication fork in ultraviolet light-irradiated human cells. Biophys J. 1979 Aug;27(2):287–300. doi: 10.1016/S0006-3495(79)85218-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edenberg H. J. Inhibition of DNA replication by ultraviolet light. Biophys J. 1976 Aug;16(8):849–860. doi: 10.1016/S0006-3495(76)85735-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lehmann A. R., Kirk-Bell S., Arlett C. F., Harcourt S. A., de Weerd-Kastelein E. A., Keijzer W., Hall-Smith P. Repair of ultraviolet light damage in a variety of human fibroblast cell strains. Cancer Res. 1977 Mar;37(3):904–910. [PubMed] [Google Scholar]
  8. Lehmann A. R., Kirk-Bell S., Arlett C. F., Paterson M. C., Lohman P. H., de Weerd-Kastelein E. A., Bootsma D. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad Sci U S A. 1975 Jan;72(1):219–223. doi: 10.1073/pnas.72.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lehmann A. R., Kirk-Bell S. Pyrimidine dimer sites associated with the daughter DNA strands in UV-irradiated human fibroblasts. Photochem Photobiol. 1978 Mar;27(3):297–307. doi: 10.1111/j.1751-1097.1978.tb07604.x. [DOI] [PubMed] [Google Scholar]
  10. Lehmann A. R. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J Mol Biol. 1972 May 28;66(3):319–337. doi: 10.1016/0022-2836(72)90418-4. [DOI] [PubMed] [Google Scholar]
  11. Meneghini R. Gaps in DNA synthesized by ultraviolet light-irradiated WI38 human cells. Biochim Biophys Acta. 1976 Apr 2;425(4):419–427. doi: 10.1016/0005-2787(76)90006-x. [DOI] [PubMed] [Google Scholar]
  12. Park S. D., Cleaver J. E. Postreplication repair: questions of its definition and possible alteration in xeroderma pigmentosum cell strains. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3927–3931. doi: 10.1073/pnas.76.8.3927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paterson M. C., Lohman P. H., Sluyter M. L. Use of UV endonuclease from Micrococcus luteus to monitor the progress of DNA repair in UV-irradiated human cells. Mutat Res. 1973 Aug;19(2):245–256. doi: 10.1016/0027-5107(73)90083-3. [DOI] [PubMed] [Google Scholar]
  14. Rauth A. M., Tammemagi M., Hunter G. Nascent DNA synthesis in ultraviolet light-irradiated mouse, human and Chinese hamster cells. Biophys J. 1974 Mar;14(3):209–220. doi: 10.1016/S0006-3495(74)85908-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Slor H., Cleaver J. E. Repair replication in replicating and non-replicating DNA after irradiation with UV light. Nucleic Acids Res. 1978 Jun;5(6):2095–2098. doi: 10.1093/nar/5.6.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Waters R. Repair of DNA in replicated and unreplicated portions of the human genome. J Mol Biol. 1979 Jan 5;127(1):117–127. doi: 10.1016/0022-2836(79)90462-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES