Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Dec 20;7(8):2239–2254. doi: 10.1093/nar/7.8.2239

Effects of nuclear disruption on the macromolecular composition of nucleosome subfractions.

B Levy-Wilson
PMCID: PMC342382  PMID: 523318

Abstract

The macromolecular composition of nucleosomal subfractions obtained by limited action of micrococcal nuclease upon trout testis chromatin has been analyzed with the purpose of comparison with the properties of transcriptionally active nucleosomal fractions derived by similar treatment of intact nuclei. The results indicate that when the native chromatin structure of intact nuclei is disrupted prior to the nuclease action, the nucleosomal subfractions that are subsequently generated have an altered composition.

Full text

PDF
2239

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellard M., Gannon F., Chambon P. Nucleosome structure III: the structure and transcriptional activity of the chromatin containing the ovalbumin and globin genes in chick oviduct nuclei. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):779–791. doi: 10.1101/sqb.1978.042.01.078. [DOI] [PubMed] [Google Scholar]
  2. Bloom K. S., Anderson J. N. Fractionation of hen oviduct chromatin into transcriptionally active and inactive regions after selective micrococcal nuclease digestion. Cell. 1978 Sep;15(1):141–150. doi: 10.1016/0092-8674(78)90090-9. [DOI] [PubMed] [Google Scholar]
  3. Camerini-Otero R. D., Sollner-Webb B., Felsenfeld G. The organization of histones and DNA in chromatin: evidence for an arginine-rich histone kernel. Cell. 1976 Jul;8(3):333–347. doi: 10.1016/0092-8674(76)90145-8. [DOI] [PubMed] [Google Scholar]
  4. Chae C. B. Release of free F1 histone during nuclease digestion of rat liver chromatin. Biochemistry. 1974 Mar 12;13(6):1110–1115. doi: 10.1021/bi00703a009. [DOI] [PubMed] [Google Scholar]
  5. Hoffmann P., Chalkley R. Procedures for minimizing protease activity during isolation of nuclei, chromatin, and the histones. Methods Cell Biol. 1978;17:1–12. doi: 10.1016/s0091-679x(08)61130-9. [DOI] [PubMed] [Google Scholar]
  6. Johnson E. M., Allfrey V. G., Bradbury E. M., Matthews H. R. Altered nucleosome structure containing DNA sequences complementary to 19S and 26S ribosomal RNA in Physarum polycephalum. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1116–1120. doi: 10.1073/pnas.75.3.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Levy-Wilson B., Dixon G. H. Limited action of micrococcal nuclease on trout testis nuclei generates two mononucleosome subsets enriched in transcribed DNA sequences. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1682–1686. doi: 10.1073/pnas.76.4.1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Levy B. W., Connor W., Dixon G. H. A subset of trout testis nucleosomes enriched in transcribed DNA sequences contains high mobility group proteins as major structural components. J Biol Chem. 1979 Feb 10;254(3):609–620. [PubMed] [Google Scholar]
  9. Levy B., Dixon G. H. Diversity of sequences of polyadenylated cytoplasmic RNA from rainbow trout (Salmo gairdnerii) testis and liver. Biochemistry. 1977 Mar 8;16(5):958–964. doi: 10.1021/bi00624a023. [DOI] [PubMed] [Google Scholar]
  10. Levy B., Dixon G. H. Partial purification of transcriptionally active nucleosomes from trout testis cells. Nucleic Acids Res. 1978 Nov;5(11):4155–4163. doi: 10.1093/nar/5.11.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McCarthy B. J., Nishiura J. T., Doenecke D., Nasser D. S., Johnson C. B. Transcription and chromatin structure. Cold Spring Harb Symp Quant Biol. 1974;38:763–771. doi: 10.1101/sqb.1974.038.01.081. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES