Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Jan;4(1):31–42. doi: 10.1093/nar/4.1.31

Aminoacylation of tRNA Trp from beef liver, yeast and E. coli by beef pancrease tryptophan-tRNA ligase. Stoichiometry of tRNATrp binding.

M Dorizzi, G Merault, M Fournier, J Labouesse, G Keith, G Dirheimer, R H Buckingham
PMCID: PMC342407  PMID: 17096

Abstract

The Michaelis constants and the maximum velocities in the aminoacylation reaction of tRNATrp from beef liver, yeast and E. coli by pure beef pancreas tryptophan-tRNA ligase show that this mammalian enzyme recognizes and charges the two eucaryotic tRNAs with the same efficiency. The rate of aminoacylation of the procaryotic tRNATrp by the enzyme is three orders of magnitude lower. The pH optimum of aminoacylation is 8 for both eucaryotic tRNAs. The optimum magnesium concentration is different. The rate is maximum when magnesium concentration is stoichiometric to ATP concentration for tRNATrp from beef liver and 10 mM above ATP concentration for tRNATrp from yeast. The number of binding sites on the enzyme for the two eucaryotic tRNAs has been measured by equilibrium filtration on Sephadex G-100 and found equal to two.

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosshard H. R., Koch L. E., Hartley B. S. Aminoacyl-tRNA synthetases from Bacillus stearothermophilus. Asymmetry of substrate binding to tyrosyl-tRNA synthetase. Eur J Biochem. 1975 May 6;53(2):493–498. doi: 10.1111/j.1432-1033.1975.tb04091.x. [DOI] [PubMed] [Google Scholar]
  2. Dorizzi M., Labouesse B., Labouesse J. Isolation and stoichiometry of beef pancreas tryptophanyl-tRNA synthetase complexes with tryptophan and tryptophanyladenylate. Eur J Biochem. 1971 Apr 30;19(4):563–572. doi: 10.1111/j.1432-1033.1971.tb01350.x. [DOI] [PubMed] [Google Scholar]
  3. Fersht A. R. Demonstration of two active sites on a monomeric aminoacyl-tRNA synthetase. Possible roles of negative cooperativity and half-of-the-sites reactivity in oligomeric enzymes. Biochemistry. 1975 Jan 14;14(1):5–12. doi: 10.1021/bi00672a002. [DOI] [PubMed] [Google Scholar]
  4. Gros C., Lemaire G., Van Rapenbusch R., Labouesse B. The subunit structure of tryptophanyl transfer ribonucleic acid synthetase from beef pancreas. J Biol Chem. 1972 May 10;247(9):2931–2943. [PubMed] [Google Scholar]
  5. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  6. Iborra F., Dorizzi M., Labouesse J. Tryptophanyl-transfer ribonucleic-acid synthetase from beef pancreas. Ligand binding and dissociation equilibrium between the active dimeric and inactive monomeric structures. Eur J Biochem. 1973 Nov 1;39(1):275–282. doi: 10.1111/j.1432-1033.1973.tb03124.x. [DOI] [PubMed] [Google Scholar]
  7. Iborra F., Mourgeon G., Labouesse B., Labouesse J. Structure-activity relationship in tryptophanyl-transfer ribonucleic acid synthetase from beef pancreas. Role of -SH groups in the activity of the enzyme. Eur J Biochem. 1973 Nov 15;39(2):547–556. doi: 10.1111/j.1432-1033.1973.tb03153.x. [DOI] [PubMed] [Google Scholar]
  8. Joseph D. R., Muench K. H. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli. I. Purification of the enzyme and of tryptrophan transfer ribonucleic acid. J Biol Chem. 1971 Dec 25;246(24):7602–7609. [PubMed] [Google Scholar]
  9. Joseph D. R., Muench K. H. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli. II. Molecular weight, subunit structure, sulfhydryl content, and substrate-binding properties. J Biol Chem. 1971 Dec 25;246(24):7610–7615. [PubMed] [Google Scholar]
  10. Lemaire G., Dorizzi M., Spotorno G., Labouesse B. Purification de la tryptophanyl tRNA synthétase de pancréas de boeuf. Bull Soc Chim Biol (Paris) 1969 Jul 25;51(3):495–510. [PubMed] [Google Scholar]
  11. Lemaire G., van Rapenbusch R., Gros C., Labouesse B. Beef pancreas tryptophanyl-tRNA synthetase. Molecular weight, composition and spectral properties. Eur J Biochem. 1969 Sep;10(2):336–344. doi: 10.1111/j.1432-1033.1969.tb00695.x. [DOI] [PubMed] [Google Scholar]
  12. NISHIMURA S., NOVELLI G. D. AMINO ACID ACCEPTOR ACTIVITY OF ENZYMICALLY ALTERED SOLUBLE RNA FROM ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Apr 27;80:574–586. doi: 10.1016/0926-6550(64)90302-0. [DOI] [PubMed] [Google Scholar]
  13. Nishimura S., Harada F., Narushima U., Seno T. Purification of methionine-, valine-, phenylalanine- and tyrosine-specific tRNA from Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):133–148. doi: 10.1016/0005-2787(67)90522-9. [DOI] [PubMed] [Google Scholar]
  14. Penneys N. S., Muench K. H. Human placental tryptophanyl transfer ribonucleic acid synthetase. Purification and subunit structure. Biochemistry. 1974 Jan 29;13(3):560–565. doi: 10.1021/bi00700a024. [DOI] [PubMed] [Google Scholar]
  15. Roe B., Sirover M., Dudock B. Kinetics of homologous and heterologous aminoacylation with yeast phenylalanyl transfer ribonucleic acid synthetase. Biochemistry. 1973 Oct 9;12(21):4146–4154. doi: 10.1021/bi00745a018. [DOI] [PubMed] [Google Scholar]
  16. Römer R., Hach R. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves. Eur J Biochem. 1975 Jun 16;55(1):271–284. doi: 10.1111/j.1432-1033.1975.tb02160.x. [DOI] [PubMed] [Google Scholar]
  17. Sigler P. B. An analysis of the structure of tRNA. Annu Rev Biophys Bioeng. 1975;4(00):477–527. doi: 10.1146/annurev.bb.04.060175.002401. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES