Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Jan;4(1):43–62. doi: 10.1093/nar/4.1.43

The interactions of the separated strands of satellite DNAs with other DNAs: 1. Conditions for associations of the alpha-satellite of the guinea pig with heterologous double-stranded DNAs.

D M Skinner, C A Chambers
PMCID: PMC342408  PMID: 405659

Abstract

The separated H- and L-strands of the alpha-satellite of the guinea pig, Cavea porcellus, recovered from centrifugation in alkaline CsC1 gradients, from complexes with 7 different double-stranded (ds) DNAs including those of 1 bacteriophage, 2 prokaryotes, 2 invertebrates and 2 mammals. The complexes are not artifacts due to in vitro labeling of the satellite, methods of collection, the presence of divalent cations, or the fact that trace amounts of single-stranded (ss) DNAs are used. More complex dsDNAs, such as that recovered from nicked RF M13, do not associate with dsDNAs.

Full text

PDF
43

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando T. A nuclease specific for heat-denatured DNA in isolated from a product of Aspergillus oryzae. Biochim Biophys Acta. 1966 Jan 18;114(1):158–168. doi: 10.1016/0005-2787(66)90263-2. [DOI] [PubMed] [Google Scholar]
  2. Arrighi F. E., Mandel M., Bergendahl J., Hsu T. C. Buoyant densities of DNA of mammals. Biochem Genet. 1970 Jun;4(3):367–376. doi: 10.1007/BF00485753. [DOI] [PubMed] [Google Scholar]
  3. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biro P. A., Carr-Brown A., Southern E. M., Walker P. M. Partial sequence analysis of mouse satellite DNA evidence for short range periodicities. J Mol Biol. 1975 May 5;94(1):71–86. doi: 10.1016/0022-2836(75)90405-2. [DOI] [PubMed] [Google Scholar]
  5. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  6. Brunk C. F., Leick V. Rapid equilibrium isopycnic CsC1 gradients. Biochim Biophys Acta. 1969 Mar 18;179(1):136–144. doi: 10.1016/0005-2787(69)90129-4. [DOI] [PubMed] [Google Scholar]
  7. Commerford S. L. Iodination of nucleic acids in vitro. Biochemistry. 1971 May 25;10(11):1993–2000. doi: 10.1021/bi00787a005. [DOI] [PubMed] [Google Scholar]
  8. Cooke H. Repeated sequence specific to human males. Nature. 1976 Jul 15;262(5565):182–186. doi: 10.1038/262182a0. [DOI] [PubMed] [Google Scholar]
  9. Corneo G., Ginelli E., Polli E. A satellite DNA isolated from human tissues. J Mol Biol. 1967 Feb 14;23(3):619–622. doi: 10.1016/s0022-2836(67)80130-x. [DOI] [PubMed] [Google Scholar]
  10. Corneo G., Ginelli E., Soave C., Bernardi G. Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. Biochemistry. 1968 Dec;7(12):4373–4379. doi: 10.1021/bi00852a033. [DOI] [PubMed] [Google Scholar]
  11. De Clercq E., Torrence P. F., Witkop B. Interferon induction by synthetic polynucleotides: importance of purine N-7 and strandwise rearrangement. Proc Natl Acad Sci U S A. 1974 Jan;71(1):182–186. doi: 10.1073/pnas.71.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FELSENFELD G., RICH A. Studies on the formation of two- and three-stranded polyribonucleotides. Biochim Biophys Acta. 1957 Dec;26(3):457–468. doi: 10.1016/0006-3002(57)90091-4. [DOI] [PubMed] [Google Scholar]
  13. Flamm W. G., Walker P. M., McCallum M. Renaturation and isolation of single strands from the nuclear DNA of the guinea pig. J Mol Biol. 1969 Jun 28;42(3):441–455. doi: 10.1016/0022-2836(69)90235-6. [DOI] [PubMed] [Google Scholar]
  14. Gall J. G., Atherton D. D. Satellite DNA sequences in Drosophila virilis. J Mol Biol. 1974 Jan 5;85(4):633–664. doi: 10.1016/0022-2836(74)90321-0. [DOI] [PubMed] [Google Scholar]
  15. Gray D. M., Skinner D. M. A circular dichroism study of the primary structures of three crab satellite DNA's rich in A:T base pairs. Biopolymers. 1974 Apr;13(4):843–852. doi: 10.1002/bip.1974.360130417. [DOI] [PubMed] [Google Scholar]
  16. Guha A., Szybalski W. Fractionation of the complementary strands of coliphage T4 DNA based on the asymmetric distribution of the poly U and poly U,G binding sites. Virology. 1968 Apr;34(4):608–616. doi: 10.1016/0042-6822(68)90082-2. [DOI] [PubMed] [Google Scholar]
  17. Hoffman L. M., Collins J. M. Single-stranded regions in regenerating rat liver DNA. Nature. 1976 Apr 15;260(5552):642–643. doi: 10.1038/260642a0. [DOI] [PubMed] [Google Scholar]
  18. Kubinski H., Opara-Kubinska Z., Szybalski W. Patterns of interaction between polyribonucleotides and individual DNA strands derived from several vertebrates, bacteria and bacteriophages. J Mol Biol. 1966 Sep;20(2):313–329. doi: 10.1016/0022-2836(66)90067-2. [DOI] [PubMed] [Google Scholar]
  19. Kunkel L. M., Smith K. D., Boyer S. H. Human Y-chromosome-specific reiterated DNA. Science. 1976 Mar 19;191(4232):1189–1190. doi: 10.1126/science.1257744. [DOI] [PubMed] [Google Scholar]
  20. LIPSETT M. N. COMPLEX FORMATION BETWEEN POLYCYTIDYLIC ACID AND GUANINE OLIGONUCLEOTIDES. J Biol Chem. 1964 Apr;239:1256–1260. [PubMed] [Google Scholar]
  21. MIYAZAWA Y., THOMAS C. A., Jr NUCLEOTIDE COMPOSITION OF SHORT SEGMENTS OF DNA MOLECULES. J Mol Biol. 1965 Feb;11:223–237. doi: 10.1016/s0022-2836(65)80053-5. [DOI] [PubMed] [Google Scholar]
  22. Marvin D. A., Hohn B. Filamentous bacterial viruses. Bacteriol Rev. 1969 Jun;33(2):172–209. doi: 10.1128/br.33.2.172-209.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. OPARA-KUBINSKA Z., KUBINSKI H., SZYBALSKI W. INTERACTION BETWEEN DENATURED DNA, POLYRIBONUCLEOTIDES, AND RIBOSOMAL RNA: ATTEMPTS AT PREPARATIVE SEPARATION OF THE COMPLEMENTARY DNA STRANDS. Proc Natl Acad Sci U S A. 1964 Oct;52:923–930. doi: 10.1073/pnas.52.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Orosz J. M., Wetmur J. G. In vitro iodination of DNA. Maximizing iodination while minimizing degradation; use of buoyant density shifts for DNA-DNA hybrid isolation. Biochemistry. 1974 Dec 31;13(27):5467–5473. doi: 10.1021/bi00724a003. [DOI] [PubMed] [Google Scholar]
  25. Perlgut L. E., Byers D. L., Jope R. S., Khamvinwathna V. Formation of triple-stranded bovine DNA in vitro. Nature. 1975 Mar 6;254(5495):86–87. doi: 10.1038/254086a0. [DOI] [PubMed] [Google Scholar]
  26. Richardson C. C. The 5'-terminal nucleotides of T7 bacteriophage deoxyribonucleic acid. J Mol Biol. 1966 Jan;15(1):49–61. doi: 10.1016/s0022-2836(66)80208-5. [DOI] [PubMed] [Google Scholar]
  27. Riley M., Maling B. Physical and chemical characterization of two- and three-stranded adenine-thymine and adenine-uracil homopolymer complexes. J Mol Biol. 1966 Sep;20(2):359–389. doi: 10.1016/0022-2836(66)90069-6. [DOI] [PubMed] [Google Scholar]
  28. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  29. Sander C., Ts'o P. O. Interaction of nucleic acids. 8. Binding of magnesium ions by nucleic acids. J Mol Biol. 1971 Jan 14;55(1):1–21. doi: 10.1016/0022-2836(71)90276-2. [DOI] [PubMed] [Google Scholar]
  30. Skinner D. M., Beattie W. G., Blattner F. R., Stark B. P., Dahlberg J. E. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (-T-A-G-G-)n-(-A-T-C-C-)n. Biochemistry. 1974 Sep 10;13(19):3930–3937. doi: 10.1021/bi00716a018. [DOI] [PubMed] [Google Scholar]
  31. Skinner D. M., Beattie W. G. Characterization of a pair of isopycnic twin crustacean satellite deoxyribonucleic acids, one of which lacks one base in each strand. Biochemistry. 1974 Sep 10;13(19):3922–3929. doi: 10.1021/bi00716a017. [DOI] [PubMed] [Google Scholar]
  32. Skinner D. M. SATELLITE DNA'S IN THE CRABS Gecarcinus lateralis AND Cancer pagurus. Proc Natl Acad Sci U S A. 1967 Jul;58(1):103–110. doi: 10.1073/pnas.58.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Southern E. M. Base sequence and evolution of guinea-pig alpha-satellite DNA. Nature. 1970 Aug 22;227(5260):794–798. doi: 10.1038/227794a0. [DOI] [PubMed] [Google Scholar]
  34. Tartof K. D. Redundant genes. Annu Rev Genet. 1975;9:355–385. doi: 10.1146/annurev.ge.09.120175.002035. [DOI] [PubMed] [Google Scholar]
  35. Torrence P. F., De Clercq E., Witkop B. Triple-helical polynucleotides. Mixed triplexes of the poly(uridylic acid)-poly(adenylic acid)-poly(uridylic acid) class. Biochemistry. 1976 Feb 24;15(4):724–734. doi: 10.1021/bi00649a002. [DOI] [PubMed] [Google Scholar]
  36. VINOGRAD J., BRUNER R., KENT R., WEIGLE J. Band-centrifugation of macromolecules and viruses in self-generating density gradients. Proc Natl Acad Sci U S A. 1963 Jun;49:902–910. doi: 10.1073/pnas.49.6.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vogt V. M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. doi: 10.1111/j.1432-1033.1973.tb02669.x. [DOI] [PubMed] [Google Scholar]
  38. Walker P. M. "Repetitive" DNA in higher organisms. Prog Biophys Mol Biol. 1971;23:145–190. doi: 10.1016/0079-6107(71)90019-8. [DOI] [PubMed] [Google Scholar]
  39. Yasmineh W. G., Yunis J. J. Localization of repeated DNA sequences in CsC1 gradients by hybridization with complementary RNA. Exp Cell Res. 1974 Oct;88(2):340–344. doi: 10.1016/0014-4827(74)90249-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES