Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Jan;4(1):229–240. doi: 10.1093/nar/4.1.229

Heterogeneity of 5' -termini of nucleolar 45S, 32S and 28S RNA in mouse hepatoma.

R Kominami, M Muramatsu
PMCID: PMC342422  PMID: 194222

Abstract

The 5'-termini of nucleolar 45S, 32S and 28S RNA's were analyzed by means of thin layer chromatography and Dowex-1 colum chromatography. 45S RNA did not bear a triphosphate at the 5'-terminus, but various monophosphates are found. 5'-termini of 32S and 28S RNA's were also heterogeneous. These results indicate that 45S molecules as isolated with the conventional procedure may not contains the primary transcript of the ribosomal gene, but a collection of large precursors with different degrees of processing at the 5'-terminus. The processing of the primary transcript may thus involve some unknown trimming processes at the 5'-terminus before the first major cleavage takes place.

Full text

PDF
229

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M., Spahr P. F., Cory S. Nucleotide sequence from the 5' end to the first cistron of R17 bacteriophage ribonucleic acid. Biochemistry. 1972 Mar 14;11(6):976–988. doi: 10.1021/bi00756a006. [DOI] [PubMed] [Google Scholar]
  2. Ahmad M. S., Markham P. D., Glitz D. G. Terminal nucleotides of avian myeloblastosis virus RNA and of ribosomal RNA from chicken leukemic myeloblasts. Biochim Biophys Acta. 1972 Nov 9;281(4):554–563. doi: 10.1016/0005-2787(72)90156-6. [DOI] [PubMed] [Google Scholar]
  3. BELL D., TOMLINSON R. V., TENER G. M. The nucleotide sequences adjacent to the 5'-termini of yeast soluble ribonucleic acids. Biochem Biophys Res Commun. 1963 Feb 18;10:304–310. doi: 10.1016/0006-291x(63)90529-1. [DOI] [PubMed] [Google Scholar]
  4. Choi Y. C., Busch H. Structural analysis of nucleolar precursors of ribosomal ribonucleic acid. Studies on the 5'-terminal and alkali-resistant dinucleotides of nucleolar high molecular weight ribonucleic acid. J Biol Chem. 1970 Apr 25;245(8):1954–1961. [PubMed] [Google Scholar]
  5. Dunn J. J., Studier F. W. T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease 3. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3296–3300. doi: 10.1073/pnas.70.12.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Egawa K., Choi Y. C., Busch H. Studies on the role of 23 s nucleolar RNA as an intermediate in the synthesis of 18 s ribosomal RNA. J Mol Biol. 1971 Mar 28;56(3):565–577. doi: 10.1016/0022-2836(71)90402-5. [DOI] [PubMed] [Google Scholar]
  7. Eladari M. E., Galibert F. Sequence determination of 5'-terminal and 3'-terminal T1 oligonucleotides of 18-S ribosomal RNA of a mouse cell line (L 5178 Y). Eur J Biochem. 1975 Jun 16;55(1):247–255. doi: 10.1111/j.1432-1033.1975.tb02157.x. [DOI] [PubMed] [Google Scholar]
  8. Ginsburg D., Steitz J. A. The 30 S ribosomal precursor RNA from Escherichia coli. A primary transcript containing 23 S, 16 S, and 5 S sequences. J Biol Chem. 1975 Jul 25;250(14):5647–5654. [PubMed] [Google Scholar]
  9. Grummt I. Synthesis of RNA molecules larger than 45 S by isolated rat-liver nucleoli. Eur J Biochem. 1975 Sep 1;57(1):159–167. doi: 10.1111/j.1432-1033.1975.tb02286.x. [DOI] [PubMed] [Google Scholar]
  10. Hashimoto S., Sakai M., Muramatsu M. 2'-O-methylated oligonucleotides in ribosomal 18S and 28S RNA of a mouse hepatoma, MH 134. Biochemistry. 1975 May 6;14(9):1956–1964. doi: 10.1021/bi00680a024. [DOI] [PubMed] [Google Scholar]
  11. King H. W., Gould H. Low molecular weight ribonucleic acid in rabbit reticulocyte ribosomes. J Mol Biol. 1970 Aug;51(3):687–702. doi: 10.1016/0022-2836(70)90017-3. [DOI] [PubMed] [Google Scholar]
  12. Konrad M., Toivonen J., Nierlich D. P. Initial nucleotide frequencies of bacterial RNA synthesized during amino-acid starvation or changes of carbon source. Nat New Biol. 1972 Aug 23;238(86):231–233. doi: 10.1038/newbio238231a0. [DOI] [PubMed] [Google Scholar]
  13. Kuwano M., Kwan C. N., Apirion D., Schlessinger D. Ribonuclease V of escherichia coli. I. Dependence on ribosomes and translocation. Proc Natl Acad Sci U S A. 1969 Oct;64(2):693–700. doi: 10.1073/pnas.64.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuwano M., Schlessinger D., Apirion D. Ribonuclease V of Escherichia coli. IV. Exonucleolytic cleavage in the 5' to 3' direction with production of 5'-nucleotide monophosphates. J Mol Biol. 1970 Jul 14;51(1):75–82. doi: 10.1016/0022-2836(70)90271-8. [DOI] [PubMed] [Google Scholar]
  15. Lane B. G., Tamaoki T. Studies of the chain termini and alkali-stable dinucleotide sequences in 16 s and 28 s ribosomal RNA from L cells. J Mol Biol. 1967 Jul 28;27(2):335–348. doi: 10.1016/0022-2836(67)90024-1. [DOI] [PubMed] [Google Scholar]
  16. McGuire P. M., Piatak M., Hodge L. D. Nuclear and cytoplasmic adenovirus RNA. Differences between 5'-terminal of messenger and non-messenger transcripts. J Mol Biol. 1976 Mar 5;101(3):379–396. doi: 10.1016/0022-2836(76)90154-6. [DOI] [PubMed] [Google Scholar]
  17. Muramatsu M., Shimada N., Higashinakagawa T. Effect of cycloheximide on the nucleolar RNA synthesis in rat liver. J Mol Biol. 1970 Oct 14;53(1):91–106. doi: 10.1016/0022-2836(70)90047-1. [DOI] [PubMed] [Google Scholar]
  18. Nikolaev N., Schlessinger D., Wellauer P. K. 30 S pre-ribosomal RNA of Escherichia coli and products of cleavage by ribonuclease III: length and molecular weight. J Mol Biol. 1974 Jul 15;86(4):741–747. doi: 10.1016/0022-2836(74)90350-7. [DOI] [PubMed] [Google Scholar]
  19. Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
  20. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  21. Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
  22. Roblin R. The 5'-terminus of bacteriophage R17 RNA: pppGp. J Mol Biol. 1968 Jan 14;31(1):51–61. doi: 10.1016/0022-2836(68)90053-3. [DOI] [PubMed] [Google Scholar]
  23. Rosenberg M., Kramer R. A., Steitz J. A. T7 early messenger RNAs are the direct products of ribonuclease III cleavage. J Mol Biol. 1974 Nov 15;89(4):777–782. doi: 10.1016/0022-2836(74)90052-7. [DOI] [PubMed] [Google Scholar]
  24. SCHERRER K., LATHAM H., DARNELL J. E. Demonstration of an unstable RNA and of a precursor to ribosomal RNA in HeLa cells. Proc Natl Acad Sci U S A. 1963 Feb 15;49:240–248. doi: 10.1073/pnas.49.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Slack J. M., Loening U. E. 5'-Ends of ribosomal and ribosomal precursor RNAs form Xenopus laevis. Eur J Biochem. 1974 Mar 15;43(1):59–67. doi: 10.1111/j.1432-1033.1974.tb03384.x. [DOI] [PubMed] [Google Scholar]
  26. Sugiura M., Takanami M. Analysis of the 5'-terminal nucleotide sequences of ribonucleic acids. II. Comparison of the 5'-terminal nucleotide sequences of ribosomal RNA's from different organisms. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1595–1602. doi: 10.1073/pnas.58.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takanami M. Analysis of the 5'-terminal nucleotide sequences of ribonucleic acids 1. the 5'-termini of Excherichia coli ribosomal RNA. J Mol Biol. 1967 Jan 28;23(2):135–148. doi: 10.1016/s0022-2836(67)80022-6. [DOI] [PubMed] [Google Scholar]
  28. Weinberg R. A., Loening U., Willems M., Penman S. Acrylamide gel electrophoresis of HeLa cell nucleolar RNA. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1088–1095. doi: 10.1073/pnas.58.3.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES