Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Feb;4(2):397–403. doi: 10.1093/nar/4.2.397

A 31P-NMR study of the interaction of Mg2+ ions with nucleoside diphosphates.

S Tran-Dinh, J M Neumann
PMCID: PMC342440  PMID: 14328

Abstract

The interaction of Mg2+ with nucleoside disphosphates : ADP, GDP, CDP and UDP has been studied by phosphorus magnetic resonance spectroscopy in aqueous solution. The results show that these four nucleotides behave similarly, the Mg2+ ion binds to the alpha but not to the beta phosphate moiety. The strength of the interaction of Mg2+ ions with nucleoside diphosphates is weaker than with nucleoside triphosphates. The association of Mg2+ on the phosphate chain is stronger in a neutral than in an acid medium.

Full text

PDF
397

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COHN M., HUGHES T. R., Jr Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J Biol Chem. 1962 Jan;237:176–181. [PubMed] [Google Scholar]
  2. Ellenberger M., Brehamet L., Villemin M., Toma F. Le couplage phosphore-phosphore dans l'adenosine di- et triphosphate. FEBS Lett. 1970 Jun 1;8(3):125–128. doi: 10.1016/0014-5793(70)80243-5. [DOI] [PubMed] [Google Scholar]
  3. Glassman T. A., Cooper C., Harrison L. W., Swift T. J. A proton magnetic resonance study of metal ion-adenine ring interactions in metal ion complexes with adenosine triphosphate. Biochemistry. 1971 Mar 2;10(5):843–851. doi: 10.1021/bi00781a018. [DOI] [PubMed] [Google Scholar]
  4. Heyde M. E., Rimai L. A Raman spectroscopic study of the interaction of Ca2+ and Mg2+ with the triphosphate moiety of adenosine triphosphate in aqueous solution. Biochemistry. 1971 Mar 30;10(7):1121–1128. doi: 10.1021/bi00783a004. [DOI] [PubMed] [Google Scholar]
  5. Kuntz G. P., Glassman T. A., Cooper C., Swift T. J. The role of coordinated water in metal ion--adenine ring binding in complexes of adenosine triphosphate. Biochemistry. 1972 Feb 15;11(4):538–541. doi: 10.1021/bi00754a009. [DOI] [PubMed] [Google Scholar]
  6. Lam Y. F., Kuntz G. P., Kotowycz G. 13C relaxation studies on the manganese(II)-adenosine 5'-triphosphate complex in solution. J Am Chem Soc. 1974 Mar 20;96(6):1834–1839. doi: 10.1021/ja00813a030. [DOI] [PubMed] [Google Scholar]
  7. Sigel H. Nucleic base-metal ion interactions. Acidity of the N(1) or N(3) proton in binary and ternary complexes of Mn-2+, Ni-2+, and Zn-2+ with the 5'-triphosphates of inosine, guanosine, uridine, and thymidine. J Am Chem Soc. 1975 May 28;97(11):3209–3214. doi: 10.1021/ja00844a048. [DOI] [PubMed] [Google Scholar]
  8. Son T. D., Roux M., Ellenberger M. Interaction of Mg2+ ions with nucleoside triphosphates by phosphorus magnetic resonance spectroscopy. Nucleic Acids Res. 1975 Jul;2(7):1101–1110. doi: 10.1093/nar/2.7.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sternlicht H., Jones D. E., Kustin K. Metal ion binding to adenosine triphosphate. 3. A kinetic analysis. J Am Chem Soc. 1968 Dec 4;90(25):7110–7118. doi: 10.1021/ja01027a041. [DOI] [PubMed] [Google Scholar]
  10. Tanswell P., Thornton J. M., Korda A. V., Williams R. J. Quantitative determination of the conformation of ATP in aqueous solution using the lanthanide cations as nuclear-magnetic-resonance probes. Eur J Biochem. 1975 Sep 1;57(1):135–145. doi: 10.1111/j.1432-1033.1975.tb02284.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES