Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Mar;4(3):697–709. doi: 10.1093/nar/4.3.697

Glycosyl conformational and inductive effects on the acid catalysed hydrolysis of purine nucleosides.

F Jordan, H Niv
PMCID: PMC342473  PMID: 17100

Abstract

The log kobs vs. pH profiles were determined in the intermediate acidity region for the glycosyl hydrolysis of guanosine and its 8-amino, 8-monomethylamino, 8-dimethylamino and 8-bromo derivatives. The decreased rate of the 8-amino and enhanced rate of the 8-bromo compound compared to guanosine support an A type mechanism: base protonation followed by glycosyl bond cleavage. All three 8-amino guanosines exhibited log kobs - pH profiles clearly showing that both mono and di-base protonated nucleosides undergo hydrolysis. The 700 fold rate acceleration of 8-N(CH3)-guanosine compared to 8-NHCH3-guanosine and the 110 fold rate acceleration of 8-N(CH3)2-adenosine compared to 8-NHCH3-adenosine could be unequivocally attributed to the fixed syn glycosyl conformation of both 8-dimethylamino compounds and relief of steric compression upon hydrolysis in these molecules. The lack of anomerization of all substrates during the course of the reaction supports an A rather than a Schiff-base mechanism.

Full text

PDF
697

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cadet J., Teoule R. Letter: Nucleic acid hydrolysis. I. Isomerization and anomerization of pyrimidic deoxyribonucleosides in an acidic medium. J Am Chem Soc. 1974 Oct 2;96(20):6517–6519. doi: 10.1021/ja00827a047. [DOI] [PubMed] [Google Scholar]
  2. Garrett E. R., Mehta P. J. Solvolysis of adenine nucleosides. I. Effects of sugars and adenine substituents on acid solvolyses. J Am Chem Soc. 1972 Nov 29;94(24):8532–8541. doi: 10.1021/ja00779a040. [DOI] [PubMed] [Google Scholar]
  3. Garrett E. R., Mehta P. J. Solvolysis of adenine nucleosides. II. Effects of sugars and adenine substituents on alkaline solvolyses. J Am Chem Soc. 1972 Nov 29;94(24):8542–8547. doi: 10.1021/ja00779a041. [DOI] [PubMed] [Google Scholar]
  4. HOLMES R. E., ROBINS R. K. PURINE NUCLEOSIDES. IX. THE SYNTHESIS OF 9-BETA-D-RIBOFURANOSYL URIC ACID AND OTHER RELATED 8-SUBSTITUTED PURINE RIBONUCLEOSIDES. J Am Chem Soc. 1965 Apr 20;87:1772–1776. doi: 10.1021/ja01086a028. [DOI] [PubMed] [Google Scholar]
  5. Hevesi L., Wolfson-Davidson E., Nagy J. B., Nagy O. B., Bruylants A. Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides. J Am Chem Soc. 1972 Jun 28;94(13):4715–4720. doi: 10.1021/ja00768a046. [DOI] [PubMed] [Google Scholar]
  6. Ikehara M., Muneyama K. Studies of nucleosides and nucleotides. 30. Syntheses of 8-substituted guanosine derivatives. Chem Pharm Bull (Tokyo) 1966 Jan;14(1):46–49. doi: 10.1248/cpb.14.46. [DOI] [PubMed] [Google Scholar]
  7. Ikehara M., Uesugi S., Yoshida K. Studies on the conformation of purine nucleosides and their 5'-phosphates. Biochemistry. 1972 Feb 29;11(5):830–836. doi: 10.1021/bi00755a023. [DOI] [PubMed] [Google Scholar]
  8. Jordan F. Lennard-Jones potential calculations of the barrier to rotation around the glycosidic C-N linkage in selected purine nucleosides and nucleotides. A direct comparison of the results of 6-12 potential calculations with results of semiempirical molecular orbital studies. J Theor Biol. 1973 Sep 21;41(2):375–395. doi: 10.1016/0022-5193(73)90125-2. [DOI] [PubMed] [Google Scholar]
  9. Jordan F. Purine carbon-8 substituent as probe of the electronic structures of adenine and guanine. A computational study. J Am Chem Soc. 1974 Sep 4;96(18):5911–5917. doi: 10.1021/ja00825a031. [DOI] [PubMed] [Google Scholar]
  10. Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
  11. Long R. A., Robins R. K., Townsend L. B. Purine nucleosides. XV. The synthesis of 8-aminoand 8-substituted aminopurine nucleosides. J Org Chem. 1967 Sep;32(9):2751–2756. doi: 10.1021/jo01284a024. [DOI] [PubMed] [Google Scholar]
  12. Panzica R. P., Rousseau R. J., Robins R. K., Townsend L. B. A study on the relative stability and a quantitative appraoch to the reaction mechanism of the acid-catalyzed hydrolysis of certain7-and9- -D-ribofuranosylpurines. J Am Chem Soc. 1972 Jun 28;94(13):4708–4714. doi: 10.1021/ja00768a045. [DOI] [PubMed] [Google Scholar]
  13. Robins M. J., Khwaja T. A., Robins R. K. Purine nucleosides. XXIX. The synthesis of 2'-deoxy-L-adenosine and 2'-deoxy-L-guanosine and their alpha anomers. J Org Chem. 1970 Mar;35(3):636–639. doi: 10.1021/jo00828a019. [DOI] [PubMed] [Google Scholar]
  14. Shapiro R., Danzig M. Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives. The general mechanism of deoxyribonucleoside hydrolysis. Biochemistry. 1972 Jan 4;11(1):23–29. doi: 10.1021/bi00751a005. [DOI] [PubMed] [Google Scholar]
  15. Shapiro R., Kang S. Uncatalyzed hydrolysis of deoxyuridine, thymidine, and 5-bromodeoxyuridine. Biochemistry. 1969 May;8(5):1806–1810. doi: 10.1021/bi00833a004. [DOI] [PubMed] [Google Scholar]
  16. Wagner R., von Philipsborn W. Protonierung von Purin, Adenin und Guanin. NMR Spektren und Strukturen der Mono-, Di- und Tri-Kationen. Helv Chim Acta. 1971;54(6):1543–1558. doi: 10.1002/hlca.19710540604. [DOI] [PubMed] [Google Scholar]
  17. Zoltewicz J. A., Clark D. F. Kinetics and mechanism of the hydrolysis of guanosine and 7-methylguanosine nucleosides in perchloric acid. J Org Chem. 1972 Apr 21;37(8):1193–1197. doi: 10.1021/jo00973a025. [DOI] [PubMed] [Google Scholar]
  18. Zoltewicz J. A., Clark D. F., Sharpless T. W., Grahe G. Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J Am Chem Soc. 1970 Mar 25;92(6):1741–1749. doi: 10.1021/ja00709a055. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES